: ( )

: ( )

 2 .. 11_03_91

 _ .

. , -

, , -

, , -

( )

( ).

- -

().

- :

, -

, -

, ,

. -

.

-

,

(), -

().

, -

. , -

.

; , -

, -

.

, -

e .

,

() -

.

┌──────┐ │

│ ┌──V──V─────┐

│ │ B=FO(S,A) │

│ │ │

│ │ S:=FS(S,A)│

│ └─────┬─────┘

└─────────┘

.

,

, -

.

, -

-

:

█ p:=1 █

┌────────┐ │

│ ┌─────V─V───────┐

│ │ (p:, b) = a+p │

│ └───────┬───────┘

└──────────┘


- 2 -

, , :

┌──┬─┐

a ──────────────────┤HS│S├────_b

┌─┬─┐p │ │ │

.─┤S│T├──┤ │P├──┐

├─┤ │ └──┴─┘ │

SYN ─────────/C│ │ │

┌┤D│ │ │

│└─┴─┘ │

└───────────────┘

, -

, 1 1,

0 - 0.

,

.

,

-

. ,

, -

, .

-

, -

. ,

-

:

┌┬─┬┐t┌──┬─┐ ┌──┬─┐ ┌┬─┬┐

a ──_┤│T│├_┤HS│S├─_b a ─────_┤HS│S├─_┤│T│├─_b

─/┴┴─┴┘ │ │ │ │ │ │─/┴┴─┴┘

C │ │ │ C │ │ │ C

─/┬┬─┬┐p│ │ │ ─/┬┬─┬┐p│ │ │

┌_┤│T│├_┤ │P├┐ ┌_┤│T│├_┤ │P├┐

│ └┴─┴┘ └──┴─┘│ │ └┴─┴┘ └──┴─┘│

└─────────────┘ └─────────────┘

-

.

█ █

█ p:=1; t:=0 █ █ p:=1 █

█ █

┌────────┐ │ ┌────────┐ │

│ ┌─────V─V───────┐ │ ┌─────V─V───────┐

│ │t:=a;(p:,b)=t+p│ │ │ (p , b):= a+p │

│ └───────┬───────┘ │ └───────┬───────┘

└──────────┘ └──────────┘

-.

:

- :

1)- .

2)- .

( ), -

. -

.

3)- , ()

:

- - {.....},

- ࠠ - <<...>>;

, ,

. GO

:

GO m - ,

GO (P; m0,m1,m2,...) - .

m0,m1,... - ,

P - , GO


- 3 -

, -

GO. Ѡ

. -

- .

-

.

. ()

(8-).

1) :

8 ┌──┬─────┬──┐

═══╪═>╡I1│ │ │

│ │ │ │ 8

8 │ │ │D ╞══╪══>

═══╪═>╡I2│ │ │

├──┤ ├──┤

─────>┤rI│ │rO├─────>

├──┤ │ │

─────>┤ C│ │ │

└──┴─────┴──┘

I1[7..0], I2[7..0] - .

rI - : rI=1, I1,

I2 .

D[7..0] - .

rO - : rO=1, -

D, -

.

2) :

, (III. ..), -

, -

,

:

. ,

, - -

.

3) - (

):


- 4 -

┌──────V──────┐

m1│ rO: = 0 │

└──────┬──────┘

│┌──────────────────┐

││┌─────┐ │

─VVV─ │ │

/ \ 0 │ │

< rI>─────┘ │

\_/ │

│1 │

┌──────V──────┐ │

│ rO: = 0 │ │

│ │ │

m2│ : = I1 │ │

│ │ │

│ B: = I2 │ │

└──────┬──────┘ │

┌───────────────────┐│ │

│ ┌─────VV──────┐ │

│ m3│ (p,S)=A - B │ │

│ └──────┬──────┘ │

│ ─V─ m6 │

│ / \ =0 ┌──────────┐│

│ z <S==0>───>┤ rO:=1;D=A├┘

│ \__/ └──────────┘

│ │╪0

│ V

│ 0 / \ 1

│ ┌───────< p >────────┐

│ ┌───────V──────┐ \_/ ┌───────V──────┐

│m4│ (x,B:)=-A+B │ m5│ (x,A:)=A - B │

│ └───────┬──────┘ └───────┬──────┘

└──────────┴────────────────────┘

-:

I1[7..0], I2[7..0] --

D[7..0] --

rI, rO --

A[7..0]:, B[7..0]: --

S[7..0] --

z, p --

z=┐(!/S) --() S[7..0] -

-- z=(S==0)

D=A

-------------------------------------------------------------------

m1{rO:=0}

g1<<GO(rI;g1,m2)>>

m2{rO:=0; A:=I1; B:=I2}

m3{(p,S)=A-B}

<<GO(z;g2,m6)>>

g2<<GO(p;m4,m5)>>

m4{(x,B:)=-A+B}

<<GO m3>>

m5{(x,A:)= A-B}

<<GO m3>>

m6{rO:=1}

<<GO g1>>


- 5 -

4) .

, , .

A ╔══════════════════════════════>D

─/┬┬──┬┐ ║ ┌────────────┐

C││RG││ ║ │ f1=(A-B) │

││ ││ ║ A│ │

I1═════>══>╡│ │╞══╝ ═>╡ f2=(-A+B)│ ┌─┐

││ ││ │ │S S│1│

││ ││ │ ╞> ═>┤ o───>z

┴┴──┴┘ │ │ │ │

B │ │ └─┘

─/┬┬──┬┐ │ │

C││RG││ │ ├────────────>p

││ ││B B│ │

I2═════>═>╡│ │╞> ═>╡ │ ─/┬┬─┬┐

││ ││ │ │ C││ │├>rO

││ ││ │ │ ││ ││

rI─────>┴┴──┴┘ └────────────┘ └┴─┴┘

, -

, ,

(, ) .

╔══════════════════════════════════════════════╗

║ A ╔══════════════════════║═══════>D

║ ┌────┐ ─/┬┬──┬┐ ║ ┌────┐ ┌──────┐ ║

║ │ MUX│ C││RG││ ║ │M2*8│ 1─>┤cr SM│ ║

╠═>┤0 │ ││ ││ ║ │ │ ├─ │ ║

I1══║═>┤1 ╞══════>╡│ │╞══╩══>╡ ╞═══>╡I1 │ ║ ┌─┐

║ ├ │ ││ ││ A │ │ │ │ ║ │1│

║ │ │ W││ ││ ├─ │ │ S╞═╩>╡ o───>z

║ └A───┘ ─A┴┴──┴┘ └A───┘ │ │ │ │

║ │ │ │ │ │ └─┘

║ umA uA uiA │ │

║ B │ │

║ ┌────┐ ─/┬┬──┬┐ ┌────┐ │ │

║ │ MUX│ C││RG││ │M2*8│ │ p├─────────>p

╚═>╡0 │ ││ ││ B │ │ │ │

I2════>╡1 ╞══════>╡│ │╞═════>╡ ╞═══>╡I2 │ C

├ │ ││ ││ │ │ │ │ ─/┬┬─┬┐

│ │ W││ ││ ├─ │ │ │1─>┤│T│├>rO

└A───┘ ─A┴┴──┴┘ └A───┘ └──────┘R W││ ││

│ │ │ ─A─A┴┴─┴┘

uMB uB uiB urO uwO

5) .

,

, ,

, - , .

, , -

1.


- 6 -

:

║umA│umB│uwA│uwB│uiA│uiB│urO│uwO│

══╬═══╪═══╪═══╪═══╪═══╪═══╪═══╪═══╡

m1║ │ │ │ │ │ │ 1 │ 0 │

──╫───┼───┼───┼───┼───┼───┼───┼───┤

m2║ 1 │ 1 │ 1 │ 1 │ │ │ 1 │ 0 │

──╫───┼───┼───┼───┼───┼───┼───┼───┤

m3║ │ │ 0 │ 0 │ 0 │ 1 │ │ 0 │

──╫───┼───┼───┼───┼───┼───┼───┼───┤

m4║ │ 0 │ 0 │ 1 │ 1 │ 0 │ │ 0 │

──╫───┼───┼───┼───┼───┼───┼───┼───┤

m5║ 0 │ │ 1 │ 0 │ 0 │ 1 │ │ 0 │

──╫───┼───┼───┼───┼───┼───┼───┼───┤

m6║ │ │ 0 │ │ │ │ 0 │ 1 │

──╨───┴───┴───┴───┴───┴───┴───┴───┘

.

, umA = umB , uiB = ┐uiA , -

:

╔══════════════════════════════════════════════╗

║ A ╔══════════════════════║═══════>D

║ ┌────┐ ─/┬┬──┬┐ ║ ┌────┐ ┌──────┐ ║

║ │ MUX│ C││RG││ ║ │M2*8│ 1─>┤cr SM│ ║

╠═>╡0 │ ││ ││ ║ │ │ ├─ │ ║

I1══║═>╡1 ╞══════>╡│ │╞══╩══>╡ ╞═══>╡I1 │ ║ ┌─┐

║ ├ │ ││ ││ │ │ │ │ ║ │1│

║ │ │ W││ ││ ├─ │ │ S╞═╩>╡ o───>z

║ └A───┘ ─A┴┴──┴┘ └A───┘ │ │ │ │

║ └────┐ ┌─┘ B ┌────┘ ├─ │ └─┘

║ ┌────┐│ │─/┬┬──┬┐ │ ┌────┐ │ │

║ │ MUX││ │ C││RG││ │ │M2*8│ │ p├─────────>p

╚═>╡0 ││ │ ││ ││ │ │ │ │ │

I2════>╡1 ╞│═══│═>┤│ │╞══│══>┤ ╞═══>╡I2 │

├ ││ │ ││ ││ │ │ │ │ │

│ ││ │ W││ ││ │ ├─ │ │ │ C

└A───┘│ │─A┴┴──┴┘ │ └A───┘ └──────┘ ─/┬┬─┬┐

│ │ │ └─┐ │ ┌─┐│ 1─>┤│T│├>rO

│ │ │ │ ├>┤ o┘ R W││ ││

├────┘ │ │ │ └─┘ ─A─A┴┴─┴┘

umB uwA uwB uiA urO uwO

---│--------│----│-----│----------------------│-│-----

y1 y2 y3 y4 y5 y6

║y1│y2│y3│y4│y5│y6│

══╬══╪══╪══╪══╪══╪══╡

m1║ │ │ │ │ 1│ 0│

──╫──┼──┼──┼──┼──┼──┤

m2║ 1│ 1│ 1│ │ 1│ 0│

──╫──┼──┼──┼──┼──┼──┤

m3║ │ 0│ 0│ 0│ │ 0│

──╫──┼──┼──┼──┼──┼──┤

m4║ 0│ 0│ 1│ 1│ │ 0│

──╫──┼──┼──┼──┼──┼──┤

m5║ 0│ 1│ 0│ 0│ │ 0│

──╫──┼──┼──┼──┼──┼──┤

m6║ │ 0│ │ │ 0│ 1│

──╨──┴──┴──┴──┴──┴──┘


- 7 -

:

┌────────────────────────────────┐

══>╡I1 │

│ │

══>╡I2 D╞══>

│ │

┌──/C rO├──>

│ │ │

│ │z p umB uwA uwB uiA urO uwO │

│ └┬──┬──A───A───A───A───A───A─────┘

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

│ ┌V──V──┴───┴───┴───┴───┴───┴─────┐

│ │z p y1 y2 y3 y4 y5 y6 │

│ │ │

┴──/C │

│ │

──>┤rI │

└────────────────────────────────┘

,

-:

m1{xxxx10}

g1<<GO(rI;g1,m2)>>

m2{111x10}

m3{x000x0}

<<GO(z;g2,m6)>>

g2<<GO(p;m4,m5>>

m4{0011x0}

<<GO m3>>

m5{0100x0}

<<GO m3>>

m6{x0xx01}

<<GO g1>>

 _. .

- () , -

()

.

= ,

.

-

. ,

, .

-

(). :

([7],x,B[6..0]) = (A[7..0],x)

8--

. , -

,

(B[7..0],d) = (A[7],A[7..0])

.

(p,S[3..0]) = A[3..0] + B[3..0] + q

, 4- -

, ( ,,q ) -

, ( ,S ) - .

( : ) - -

( ) . -

-

.


- 8 -

.

- (

),

. :

( e,D:) = R1 + R2 + c

, ,

, , :

┌───┐

c │MUX│

┌┬──┬┐ │ │ ┌───┐

││T │├───>┤0 │ ┌────┐ │MUX│ D

└┴──┴┘ ──>┤1 │ │ SM│ │ │ ┌┬──┬┐

──>┤ ├───>┤cr │ ═══>╡0 ╞═══>╡│RG│╞══>

├───┤ │ S╞═════>╡1 │ └┴──┴┘

R1 │MUX│ │ │ ═══>╡ │

┌┬──┬┐ │ │ │ │ └───┘

││RG│╞═══>╡0 ╞═══>╡I1 │ ┌───┐

└┴──┴┘ ══>╡1 │ │ │ │MUX│

══>╡ │ │ │ │ ├────────────>e

├───┤ │ p├─────>┤0 │

R2 │MUX╞═══>╡I2 │ ───>┤1 │

┌┬──┬┐ │ │ └────┘ ───>┤ │

││RG│╞═══>╡0 │ └───┘

└┴──┴┘ ══>╡1 │

══>╡ │

└───┘

, ,

( -

). ,

- .

- , -

( ) . -

.

, -

"" .

:

{ (p,A):= A + B

(C,r):= A + D }

- ,

.

:

{ (C,x):= A + D

(x,A)= C + B }

,

- . , -

o .

{ A:= B ; B:= 0 }

:=0 (

, ).

: :=0 ,

.

,

( ) ,

. , ,

, , -

.

. :


- 9 -

█ █

█ CT:=(╪0)█ █ CT:=(╪0)█

█ █

│ │

┌────V───┐ ┌────V───┐

m1│ CT:=3 │ m1│ CT:=3 │

└────┬───┘ └────┬───┘

┌──────>│ ┌──────>│

│ ─V─ │ ─V─

│ / \ =0 │ / \ =0

│ <CT==0>─> │ <CT==0>─>

│ \___/ │ \___/

│ │╪0 │ │╪0

│ ┌────V───┐ │ ┌────V───┐

│m2│........│ │m2│........│

│ │ │ │ │ │

│ │CT:=CT-1│ │ │CT:=CT-1│

│ └────┬───┘ │ └────┬───┘

└───────┘ │ ┌────V───┐

│m3│........│

│ └────┬───┘

└───────┘

4 ; -

m3 , , - 3 -

. ( !)

- ,

,.. -

. ,

,

.

( ), .

-

.

- ,

, , - -.

- -

,

.

 _ߠ Π

-

:

███████████████████████████████████████████████████████████

█ █

█ ┌──────────┐ ┌┬──────┬┐ ┌──────────┐ ┌───────┐ █

██>╡│ ││││ ││ │▐███

│ ▐███>╡│ │▐██>╡ ▐██>╡ │

██>╡ │ ││ ││ │ │ │ ▐███>

└─A────────┘ ─/─┴┴───A──┴┘ └──A───────┘ └──A────┘

█ ┌─┐│CC █ █ █

█ SYN─>┤&├┘ █ █ █

█ ┌┤ │ █ █ █

█ yC│└─┘ █ █ █

└────────────────────────────────────────────────┘

(, -

, ) . , -

, .

젠 蠠 ࠠ


- 10 -

( ).

y, -

. ,

,

- . , (-

) , ,

. (-

) , . (

.)

 _

:

1)- ;

2)- , ;

3)- .

-

(

), ,, Ѡ

.

:

- ;

-

:

, " -

" ;

(.,,

).

,

,

.

"" -

"" -

, ..

, .

(

), .

, -

, - -

, .

, ,

-

- .

, ,

-

"" -

.

-

, -

. ,

,

. ,

- . (

). ,

.

, -

, -

, -

.


- 11 -

 _

,

,

(.. -

). , -

, ,

.  

,

.

: , -

.

"" .

:

1)- "" ()

, ,

;

2)- ,

-

;

3)- , ..

;

-

, , -

. -

, 1 - 3

.

- - -

, ,

-

.

.

, :

─┬─

┌───────V───────┐ A ┌────┐

│ J:=0 │ ┌┬──┬─┐ │ MUX│ ┌────┐

└───────┬───────┘ ││RG│0├───>┤0 │ │ f │

┌──────┐ │ ││ │.│ . │. │A[J] │ │

│ ┌────V──V───────┐ ││ │.│ . │. ├────>┤ │

│ │ ..... │ ││ │.│ . │. │ │ │ B

│ │ │ ││ │ │ │ │ │ ╞══>

│ │ B= f(...,A[J])│ ││ │K├───>┤K │ │ │

│ │ │ ││ │.│ │. │ ══>╡ │

│ │ J:=J+1 │ ││ │.│ │. │ │ │

│ └───────┬───────┘ ││ │.│ │. │ │ │

│ ─V─ └┴──┴─┘ ├─ │ └────┘

│ <K / \ =K J═════════>╡ │

└──────<J==K>─────> └────┘

\__/

( J a).


- 12 -

,

D. :

───┬── A D

│ ┌┬──┬┐ ┌┬──┬─┐ A[J] ┌─────┐

┌───────V───────┐ ││RG││ ││RG│0├─────>┤ f │

│ J:=0 │ ││ ││ ││ │.│ │ │

│ │ ││ ││ ││->│.│ │ │ B

│ D:=A │ ││ │╞══════>╡│ │.│ │ ╞══>

└───────┬───────┘ ││ ││ ││ │ │ │ │

┌──────┐ │ ││ ││ ││ │K├ │ │

│ ┌────V──V───────┐ ││ ││ x ──>┤Dn │.│ │ │

│ │ ..... │ ││ ││ ││ │.│ ══>╡ │

│ │ │ ││ ││ S W││ │.│ │ │

│ │ B= f(...,D[0])│ └┴──┴┘ ─v─v┴┴──┴─┘ └─────┘

│ │ │

│ │ (D,x):=(x,D) │

│ │ │

│ │ J:=J+1 │

│ └───────┬───────┘

│ ─V─

│ <K / \ =K

└──────<J==K>─────>

\__/

A ,

( ).

: , -

:

───┬── ┌┬─┬┐B[0]

│ a ────────────┬─────>┤│T│├────>

┌───────V───────┐ │ W││ ││

│ J:=0 │ ┌───┐ │ ─A┴┴─┴┘

└───────┬───────┘ │DC │ ┌──┼─────┘| |

┌──────┐ │ │ 0├─┘ │ | |

│ ┌────V──V───────┐ │ .│. │ ┌┬─┬┐B[K]

│ │ ..... │ │ .│. └─────>┤│T│├────>

│ │ │ │ .│. W││ ││

│ │ a=f(...) │ J ══>╡ │ ─A┴┴─┴┘

│ │ │ │ K├──────────┘

│ │ B[J]:=a │ │ .│

│ │ │ │ .│

│ │ J:=J+1 │ │ .│

│ └───────┬───────┘ └───┘

│ ─V─

│ <K / \ =K

└──────<J==K>─────>

\__/

,

.

-

D[K..0], -

:


- 13 -

───┬──

│ D B

┌───────V───────┐ ┌──┬──┬┐ ┌┬──┬┐

│ J:=0 │ │ │RG││ ││RG││

└───────┬───────┘ │ │->││ ││ ││

┌──────┐ │ a │ │ │╞═════>╡│ ││

│ ┌────V──V───────┐ ──>┤Dk│ ││ ││ ││

│ │ ..... │ S│ │ ││ W││ ││

│ │ │ ─v┴──┴──┴┘ ─v┴┴──┴┘

│ │ a=f(...) │

│ │ │

│ │ (D,x):=(a,D) │

│ │ │

│ │ J:=J+1 │

│ └───────┬───────┘

│ ─V─

│ <K / \ =K ┌────┐

└──────<J==K>──>┤B:=D├>

\__/ └────┘

, , , -

().

 _ɠ

-

, -

. -

582, 583, 584, 588, 589, 1800, 1804 .., -

, , --

.

:

╔══════════════════╦═══════════════════════════╗

║ ║ ║

║ ║ SYN┐ ACC ║

║ ┌─┬─────┬┐ ║ ─/┬┬──┬┐ ┌─────┐ ║

║ │ │ RGF ││ ║ C││RG││ │ ALU │ ║

║ │ │ ││ ║ ││ ││ │ │ ║

║ │ │ ││ ╚════>╡│ │╞═════>╡ │ ║

║ │ │ ││ ││ ││ │ ╞═══╩═>DO

╚═══>╡D│ ││ └┴──┴┘ │ │

│ │ ││ T │ │

│ │ ││ ┌┬──┬┐ │ ╞═════>P

│ │ ││ ││RG││ │ │

│ │ │╞═════════>╡│ │╞═════>╡ │

│ │ ││ ││ ││ │ │

C W││ ││ C││ ││ ╔═>╡ │

─o─A┴A┴─────┴┘ ─┬┴┴──┴┘ ║ └──A──┘

SYN┘ │ ║ SYN┘ ║ ║

│ ║ ║ ║

yW YA DI═════╝ YF

ALU - - -

,

.

RGF - - RAM -

.

RG'T' - - .

RG'CC' - - -

.

DI,DO - .


- 14 -

- ().

YF - .

YA - / RGF.

yW - RGF.

, RGF,

. -

, -

,

RG'T' -

. -

RG'ACC', -

SYN=1 RGF; RG'T'

. SYN=0 -

RG'T', .. ,

( ) RGF. -

RGF RG'ACC' , .. -

.

 _Š

.

:

╔══════════════════════════╗

║┌────┐ ┌┬──┬┐ ┌────┐ ║

╚╡ CS │ ││RG││ │CS ╞<╝

│ ╞<═╦═╡│ │╞<══╡ │

┌───┤ b │ ║ ││ ││ │ c ├<────┐

│ └────┘ ║ └┴──┴┴A─ └────┘ │

│ ┌────┐ ║ └───────────┐ │

│ │CS ╞<═╝ │ │

│┌──┤ a ├<───────────────────┐ │ │

││ └────┘ │ │ │

----││----------------------------│-│-│--

││┌────┐ ┌┬──┬┐ ┌─────┐│ │ │┐

│└─>┤ CS│ ││RG││ │ CS ├┘ │ ││

└──>┤ ╞════>╡│ │╞═>╡ ├──┘ ││Y

│ │ ││ ││ │ ├────┘│

╔>╡ p │ ││ ││ │ y ╞═╗ ┘

║ └────┘ └┴──┴┘ └─────┘ ║

╚════════════════════════════╝

, (t)=f(Y(t))

,

PB(t+1)=F(Y(t))

,

- .

-

. , -

,

( ),

(CSy,CSa,CSp,RG).

:

> ty + ta + tp + trg,

tj- .

, -

- :


- 15 -

╔══════════════════════════╗

║┌────┐ ┌┬──┬┐ ┌────┐ ║

╚╡ CS │ ││RG││ │CS ╞<╝

│ ╞<═╦═╡│ │╞<══╡ │

┌───────────┤ b │ ║ ││ ││ │ c ├<────┐

│ FF └────┘ ║ └┴──┴┴A─ └────┘ │

│ ┌┬──┬┐ ┌────┐ ║ └───────────┐ │

│┌─┤│RG│╞<══╡ CS ╞<═╝ │ │

││ ││ ││ │ a ├<───────────────────┐ │ │

││ └┴──┴┴A─ └────┘ │ │ │

││ └──────────────────────────┐ │ │ │

---││----------------------------------│-│-│-│--

││ MK │ │ │ │

││ PA ┌────┬────┐ ┌┬──┬┐│ │ │ │┐

│└────>┤ CS│ CS │ ││RG│├┘ │ │ ││

│ │ │ │ ││ │├──┘ │ ││Y

└─────>┤ │ ╞═══════════>╡│ │├────┘ ││

│ │ │ ││ │├──────┘│

╔>╡ p │ y │ ││ │╞═╗ ┘

║ └────┴────┘ └┴──┴┘ ║

╚═══════════════════════════════╝

,

, . -

RG'FF' ( ) RG'MK' ( -

) .

:

T > max( ta,(tp + ty) )+ trg ,

PA(t+1)=f(Y(t)), ..

.

mS{...;pA=f(...)}

<< GO(pA;mi,mj)>>,

, -

-

:

mS{...,pA=f(...)}

mS'{ }

<< GO(pA;mi,mj)>>

,

, -

. -

( , )

.

 _

, SYN,

, -

. =0 - - -

. -

0 1

(),

. "" ͠

:

┌──────────┐ ┌────────┐

V 0H/CONST│ V 1H/SYN│

█▀▀▀█────────┘ █▀▀▀█──────┘

>▌ 0 ▐──────────────>▌ 1 ▐──────┐

█▄▄▄█ 1H/CONST █▄▄▄█ 0H/X │

렠 │

└────────────────────────────┘

,


- 16 -

D-.

( ):

)- , )- :

┌──┐ ┌──┐

SYN ──┬──────────┤ 1├── CC SYN ──┬──────────┤ &├── CC

│ ┌─┬─┐ ┌─┤ │ │ ┌─┬─┐ ┌─┤ │

└─/C│T│ │ └──┘ └─\C│T│ │ └──┘

│ │ ├ │ │ │ ├──┘

┌─┤D│ │ │ ┌─┤D│ │

│ ├─┤ o──┘ │ ├─┤ o─

├─oR│ │ ├─oR│ │

H │ └─┴─┘. . . H │ └─┴─┘. . .

──┴─────────────────── ──┴───────────────────

, -

, ,

.


 
2012 , , .