![]() |
||
Главная
Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии |
Шпаргалка: Интегралы, дифуры, матрицыШпаргалка: Интегралы, дифуры, матрицыІнтегральне числення Невизначений інтеграл 1. Поняття первісної Означення: Функція F(x) називається первісною для ф-ії f(x) на проміжку І, якщо на цьому проміжку F`(x)=f(x) або dF(x)=f(x)dx. Із означення виходить, що первісна F(x) – диференційована, а значить неперервна функція на проміжку І, і її вигляд суттєво залежить від проміжку, на якому вона розглядається. Теорема про множину первісних Якщо F(x) – первісна для функції f(х) на проміжку І, то: F(x)+С – також первісна для f(x) на проміжку І; будь-яка первісна Ф(х) для f(x) може біти представлена у вигляді Ф(х)= F(x)+С на проміжку І. (Тут С=const називається довільною сталою). 2. Невизначений інтеграл. Задача інтегрування Означення: Операція знаходження первісних для ф-ії f(x) називається інтегруванням. Задача інтегрування функції на проміжку полягає в тому, щоб знайти всі первісні функції на цьому проміжку. Для розв’язання задачі інтегрування функції достатньо знайти одну будь-яку первісну на розглядуваному проміжку, наприклад F(x), тоді (за теоремою про множину первісних) F(x)+С – загальний вигляд всієї множини первісних на цьому проміжку. Означення: Ф-ія F(x)+С, зо являє собою загальний вигляд всієї множини первісних для ф-ії f(x) на проміжку І і позначається де f(x) – підінтегральна ф-ія; f(x)dx – підінтегральний вираз; dx – диференціал змінної інтегрування. Теорема Коші. Для існування невизначеного інтеграла для ф-ії f(x) на певному проміжку достатньо, щоб f(x) була неперервною на цьому проміжку. Неінтегровні інтеграли – які неможливо записати через основні елементарні ф-ії. 3. Властивості невизначеного інтеграла Властивості, що випливають із означення невизн. інт: І. похідна від невизначеного інтеграла дорівнює підінтегральній ф-ії: ІІ. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу. ІІІ. Властивості, що відображають основні правила інтегрування: IV. Сталий множник, що не дорівнює нулю, можна виносити з-під знака інтеграла. V. Невизн. інтеграл від суми функцій дорівнює сумі невизначених інтегралів від цих функцій, якщо вони існують. 4. Інтегрування розкладом Базується на 5-й властивості невизначеного інтеграла. Мета – розкласти підінтегральну ф-ію на такі доданки, які простіше інтегрувати. 5. Інтегрування частинами Теорема: Якщо
функції u(x) та v(x) мають неперервні похідні, то: На практиці ф-ії u(x) та v(x) рекомендується вибирати за таким правилом: при інтегруванні частинами підінтегральний вираз f(x)dx розбивають на два множники типу udv, тобто f(x)dx=udv; при цьому ф-ія u(x) вибирається такою, щоб при диференціюванні вона спрощувалася, а за dv приймають залишок підінтегрального виразу, який мітить dx, інтеграл від якого відомий, або може бути просто знайдений. Деякі типи інтегралів і їх заміни: v(x): де Р(х) – многочлен, Q(x) – алгебраїчна ф-ія. 6. Метод підстановки Мета – перетворити інтеграл до такого вигляду, який простіше інтегрувати. Теорема. Якщо f(x) – неперервна, а x=j(t) має неперервну похідну, то: Наслідок. 7. Метод безпосереднього інтегрування В цьому методі використ. формула варіанту заміни змінної, але саму змінну не записують (роблять усно) При цьому використовують операцію внесення ф-ії під знак диференціала. Через це, якщо:
Під знак диференціала можна вносити будь-який сталий доданок – значення диференціалу від цього не зміниться. 8. Інтегрування раціональних ф-ій Означення:
Відношення двох многочленів Означення: Раціональний дріб правильний, якщо степінь многочлена в чисельнику менший степеня многочлена в знаменнику, тобто n<m. Якщо ж n³m, то дріб неправильний. Найпростіші раціональні дроби (4 типи): 1. де k³2, kÎN, D=p2-4q<0 Теорема: Будь-який правильний раціональний нескоротний дріб можна представити у вигляді скінченого числа найпростіших дробів використовуючи такі правила: 1) Якщо Qm(x)=(x-a)k×gm-k(x), то: 2) Якщо Qm(x)=(x2+px+q)k×gm-2k(x), то: де Аі,
Ві, Методика інтегрування раціональних ф-ій: 1. Якщо підінтегральна ф-ія – неправильний раціональний дріб, то за допомогою ділення його розкладають на суму многочлена і правильного раціонального дробу. 2. Знаменник правильного раціон. дробу розкладають на множники. По вигляду знаменника, правильний раціон. дріб представляють у вигляді найпростіших дробів, використовуючи метод невизначених коефіцієнтів. 3. Інтегрують цілу частину і найпростіші дроби. 9. Інтегрування тригонометричних функцій Розглянемо òR(sin x,cos x)dx, де R – раціональна ф-ія відносно sin, cos, тобто над sin, cos викон. лише арифметичні дії та піднесення до цілого степеня. Існують такі підстановки, що за їх допомогою інтеграл òR(sinx,cosx)dx завжди може бути зведений до інтеграла від раціональної ф-ії òR*(t)dt, загальна схема інтегрування якої розроблена. 1) Універсальна
тригонометрична підстановка 2) Підінтегральна ф-ія – непарна відносно sin x, тоді роблять підстановку cos x = t. 3) Підінтегральна ф-ія – непарна відносно cos x раціоналізується за допомогою підстановки sin x = t. 4) Підінтегральна ф-ія R(sin x, cos x) – парна по sinx, cosx сукупно, тобто R(-sinx,-cosx)=R(sinx,cosx). В цьому випадку використовують підстановку tgx=t або ctgx=t. 5) Підінтегральна ф-ія R(tgx) раціоналізується підстановкою tgx=t. В інтегралах òsin2nx×cos2mxdx рекомендується скористатися формулами зниження степеня. 10. Інтегрування ірраціональних функцій. 1) 2) 3) Підінтегральна
ф-ія Визначений інтеграл 1. Поняття визначеного інтеграла Означення: Якщо існує скінченна границя інтегральних сум Sn при lіà0 і не залежить ні від способу розбиття [a;b] на частини Dхі, ні від вибору точок xі, то ця границя називається визначеним інтегралом від ф-ії f(x) на проміжку [a;b] і позначається: За означенням,
визначений інтеграл Ф-ія, для якої на інтервалі існує визначений інтеграл називається інтегровною. 2. Властивості визначеного інтеграла 1) Якщо
f(x)=c=const, то 2) Сталий множник можна виносити з-під знака визначеного інтеграла. 3) Якщо f1(x)
та f2(x) інтегровні на [a;b], то: 4) Якщо у визначеному інтегралі поміняти місцями межі інтегрування, то інтеграл лише змінить свій знак на протилежний. 5) Визначений інтеграл з однаковими межами інтегрування дорівнює нулю. 6) Якщо f(x) –
інтегровна в будь-якому із проміжків [a;b], [a;c], [c;b], то: 7) Якщо f(x)³0 і
інтегровна для xÎ[a,b], b>a, то 8) Якщо f(x), g(x)
– інтегровні та f(x)³g(x) для
xÎ[a;b], b>a, то: 9) Якщо f(x) –
інтегровна та m£f(x)£M, для xÎ[a;b], b>a, то 10) (Теорема
про середнє): Якщо ф-ія f(x) – неперервна для xÎ[a;b], b>a, то знайдеться така точка x=
cÎ [a;b], що: 3. Поняття визначеного інтеграла із змінною верхньою межею інтегрування, формула Ньютона-Лейбніца. Теорема: Якщо ф-ія f(x) неперервна для будь-якого xÎ[a;b], то похідна від інтеграла із змінною верхньою межею інтегрування по цій межі дорівнює підінтегральній ф-ії від верхньої межі інтегрування, тобто: Наслідки: 1) Визначений інтеграл із змінною верхньою межею від ф-ії f(x) є одна із первісних для f(x). 2) Будь-яка неперервна ф-ія на проміжку [a;b] має на цьому проміжку первісну, яку, наприклад, завжди можна побудувати у вигляді визначеного інтеграла із змінною верхньою межею. Теорема (Ньютона-Лейбніца): Якщо ф-ія f(x) – неперервна для xÎ [a;b], то визначений інтеграл від ф-ії f(x) на проміжку [a;b] дорівнює приросту первісної ф-ії f(x) на цьому проміжку, тобто:
Зв’язок між визначеним та невизначеним інтегралами можна представити такою рівністю:
4. Метод підстановки у визначеному інтегралі Теорема: Якщо: 1) f(x) – неперервна для xÎ[a;b]; 2) j(a)=а, j(b)=b; 3) x=j(t) та j‘(t) – неперервні для tÎ [a;b]; 4) при tÎ [a;b]èxÎ [a;b], то Зауваження: При заміні змінної інтегрування у визначеному інтегралі змінюються межі інтегрування і тому нема потреби повертатись до початкової змінної. 5. Інтегрування частинам у визначеному інтегралі Теорема: Якщо
ф-ії u(x) та v(x) мають неперервні похідні для xÎ[a;b], то Узагальнення поняття інтеграла 1. Невластиві інтеграли із нескінченним проміжком інтегрування Нехай f(x)
інтегровна для будь-якого скінченного bÎ[a;+¥), так що Означення:
Границя Якщо ця границя скінченна, то невластивий інтеграл називається збіжним, а якщо не існує (в тому числі нескінченна), – розбіжним. Вважаючи, що f(x) – інтегровна для скінченних a та b, формули для обчислення невластивих інтегралів на нескінченному проміжку мають вигляд: де с=const. Теорема: Якщо
при x ³ a має місце нерівність 0£f(x)£g(x) то
із збіжності інтеграла 2. Обчислення невластивих інтегралів від розривних (необмежених) функцій Нехай f(x) неперервна на проміжку (a;b] та при x=a має розрив 2-го роду. Означення: Якщо ця границя існує – інтеграл збіжний, якщо ні – розбіжний. Для обчислення таких невластивих інтегралів використовують такі формули: 1) x = a – точка розриву f(x), 2) x = b – точка розриву f(x), 3) x=cÎ(a;b) –точка розриву f(x), Зауваження: до невластивих інтегралів, які мають точку розриву, що є внутрішньою для [a;b] не можна застосовувати формулу Ньютона-Лейбніца. 3. Поняття подвійного інтеграла Означення: Якщо
Властивості подвійного інтеграла: 1. 2. 3. 4. 4. Обчислення подвійного інтеграла зведенням до повторного інтеграла Означення: Область D називається правильною по відношенню до деякої осі, якщо будь-яка пряма паралельна цій осі перетинає межу області не більше ніж у двох точках. 5. Заміна змінних інтегрування в подвійному інтегралі Теорема: Якщо
ф-ія f(x;y) неперервна в області D, а ф-ії x=j(u;v), y=y(u;v) диференційовні і встановлюють
взаємно-однозначну в системі Ouv, і при цьому їхній якобіан зберігає незмінним
свій знак в області D, то має місце формула: 6. Поняття криволінійних інтегралів першого та другого роду Криволінійний інтеграл першого роду Означення: називається криволінійним інтегралом першого роду, якщо ця границя існує і не залежить ні від способу розбиття дуги L на елементарні дуги, ні від вибору на них точок Mi. Враховуючи формулу обчислення дуги кривої, цей інтеграл можна обчислити за такою формулою: В тривимірному випадку для ф-ії u=f(x;y;z), коли дуга кривої L задана параметричними рівняннями x=x(t), y=y(t), z=z(t), a £ t £ b. Формула має вигляд:
Криволінійний інтеграл першого роду Якщо P(x;y) та Q(x;y) – неперервні ф-ії, а y=j(x) – рівняння дуги гладкої кривої L, яка пробігається при зміні х від а до b, то криволінійний інтеграл другого роду має такий вигляд:
Криволінійний
інтеграл другого роду можна розглядати як інтеграл від вектор-функції ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ Основні поняття 1. Множини точок на площині та в n-вимірному просторі. Множина точок називається зв'язною, якзо будь-які її дві точки можна з'єднати ламаною лінією так, щоб всі точки цієї лінії належали цій множині. Множина точок називається обмеженою, якщо її точки належать множині точок круга скінченного радіуса. Множина точок, координати яких задовольняють нерівність (x1-x10)2+(x2-x20)2+…+(xn-xn0)2<d2 називається d-околом точки P0(x10, x20,…, xn0). Зауваження: у випадку двовимірного простору цю нерівність можна представити у вигляді: (х-х0)2+(у-у0)2<d2. Точка внутрішня для множини точок, якщо вона належить цій множині разом з деяким своїм d-околом і зовнішня, якщо існує її окіл з точок, жодна з яких на належить цій множині. Зв’язна множина, яка складається тільки з внутрішніх точок, називається відкритою областю (або просто областю). Точка наз. межовою для області якщо в будь-якому її d-околі знайдуться точки, що не належать області. Множина межових точок наз. межею області. Область об’єднана зі своєю межею називається замкненою областю. Множина опукла, якщо будь-які точки множини можна зв’язати відрізком. 2. Означення ф-ії багатьох змінних Якщо кожній точці Р(х1, х2,..., хn) множини D n-вимірного простору поставлено у відповідність з деяким законом одне і тільки одне число z Î E Ì R, то кажуть, що в області D Ì Rn задано функцію n незалежних змінних z=f(x1, x2,…, xn). При цьому D називають областю ф-ії, Е- областю значень ф-ії. 3. Способи завдання ф-ії Ф-ію двох змінних можна зобразити: аналітично (у вигляді формули) таблично (у вигляді таблиці) графічно Лінією рівня наз. множина всіх точок площини, в яких ф-ія z=f(x;y) набуває однакових значень. Рівняння ліній рівня записують у вигляді f(x;y)=C. 4. Границя ф-ії двох змінних Число В називається границею ф-ії z=f(x;y) при хàx0, yày0, якщо для будь-якого e>0 існує число d>0 таке, що при виконанні нерівності 0<(x-x0)2+(y-y0)2<d2 виконується нерівність |f(x;y)-B|<e і позначається: Зауваження: Для ф-ії багатьох змінних справедливі теореми про границю суми, добутку чи частки, які аналогічні відповідним теоремам для ф-ії однієї незалежної змінної. 5. Неперервність ф-ії двох змінних Ф-ія z=f(x;y)
називається неперервною в точці P0(x0;y0),
якщо Ф-ія називається неперервною в області (замкненій чи відкритій), якщо вона неперервна в кожній точці цієї області. Теорема: Нехай на множині D визначена складна ф-ія z=f(x;y), де x=x(u;v), y=y(u;v) і нехай ф-ії x=x(u;v), y=y(u;v) неперервні в точці (u0;v0), а ф-ія f(x;y) неперервна в точці (х0;у0), де x0=x(u0;v0), y0=y(u0;v0). Тоді складна ф-ія z=f(x(u;v);y(u;v)) неперервна в точці (u0;v0). 6. Властивості неперервної ф-ії двох змінних Теорема. Якщо ф-ія неперервна в точці, то вона обмежена деяким околом цієї точки. Теорема. Якщо ф-ії f(x;y) та g(x;y) неперервні в точці (x0;y0), то в цій точці будуть неперервними f(x;y)±g(x;y), f(x;y)×g(x;y), f(x;y)/g(x;y) при g(x0;y0)¹0 Теорема. Якщо ф-ія неперервна на замкнутій множині, то вона обмежена на цій площині. Теорема. Якщо ф-ія неперервна на замкнутій обмеженій множині, то серед її значень є як найменші, так і найбільші. Теорема. (про нуль неперервної ф-ії): Нехай ф-ія неперервна на зв’язній множині D і приймає у двох точках А і В цієї множини значення різних знаків. тоді у множині D знайдеться така точка, що в ній ф-ія обертається в нуль. Теорема. (про проміжне значення): Нехай ф-ія f(x;y) неперервна на зв'язаній множині D і у двох будь-яких точках А та В цієї множини вона приймає будь-яке значення m, яке лежить між f(A) і (B), тобто існує така точка cÎD, що f(c)=m. ДИФЕРЕНЦІЙОВНІСТЬ Ф-ІЇ ДВОХ ЗМІННИХ 1. Частковий та повний прирости ф-ії двох змінних. Різницею Аналогічно визначаються прирости ф-ії більш ніж двох змінних. 2. Диференційовність ф-ії двох змінних Ф-ія Головна лінійна
структура приросту ф-ії, тобто АDх+ВDу називається повним диференціалом ф-ії
(першим диференціалом) f(x;y) в точці x0, y0 і
позначається dz: Теорема: Якщо ф-ія z=f(x;y) диференційовна в точці (x0,y0), тоді існують границі: Означення:
Нехай ф-ія z=f(x;y) визначена в точці (х0;у0) і в її
деякому околу. Якщо існує 3. Достатня умова диференційовності ф-ії двох змінних у точці Існування частинних похідних – необхідна, ала не достатня умова диференційовності ф-ії двох змінних в точці. Теорема: Якщо ф-ія z=f(x;y) в деякому околу точки (х0;у0) має неперервні частинні похідні, то вона диференційовна в точці (х0;у0). 4. Диференціювання складної ф-ії Теорема: Нехай на множині D визначена складна ф-ія z=f(u;v), де u=u(x;y), v=v(x;y) і нехай ф-ії u(x;y), v(x;y) мають у деякому околу точки (х0;у0)ÎD неперервні частинні похідні, а ф-ія z=f(u;v) має неперервні частинні похідні в деякому околу точки (u0;v0), де u0=u(x0;y0), v0=v(x0;y0). Тоді складна ф-ія z=f(u(x,y);v(x,y)) диференційовна в точці (х0;у0), причому
5. Похідна за напрямом. Градієнт Означення:
Нехай ф-ія z=f(x;y) визначесна в деякому околі точки P0=(x0;y0); l
деякий промінь з початком в точці P0=(x0;y0); P=(x;y) – точка на цьому промені, яка належить околу, що
розглядається, – околу точки P0=(x0;y0); Dl – довжина відрізка P0Р. Границя В частинному
випадку, Похідна за
напрямом Теорема: Якщо
ф-ія z=f(x;y) має в точці P0=(x0;y0) неперервні частинні похідні, тоді в цій
точці існує неперервна похідна Означення:
Вектор з координатами 6. Частинні похідні і повні диференціали вищих порядків Означення: Диференціалом другого порядку від ф-ії z=f(x;y) називається диференціал від її повного диференціалу, тобто d2z=d(dz). Аналогічно визначають диференціали третього і вищого порядків. Теорема: Якщо
ф-ія z=f(x;y) визначена в області D, в цій області існують перші похідні 7. Похідна неявної ф-ії Якщо існує неперервна ф-ія однієї змінної y=f(x) така, що відповідні пари (x;y) задовольняють умову F(x;y), тоді ця цмова називається неявною формою ф-ії f(x), сама ф-ія f(x) називається неявною ф-ією, яка задовольняє умову F(x;y)=0. Припустимо, що
неперервна ф-ія y=f(x) задана в неявній формі F(x;y)=0 і що Аналогічно частинні похідні ф-ії двох незалежних змінних z=f(x;y), яка задана за допомогою рівняння F(x;y;z)=0 де F(x;y;z) – диференційовна ф-ія змінних x,y,z, можуть бути обчислені за формулами:
8. Формула Тейлора для ф-ії двох змінних Розглянемо ф-ію
двох змінних z=f(x;y). Припустимо, що в околу заданої точки (x0;y0) ця ф-ія має неперервні похідні всіх
порядків, до n+1
включно. Надамо x0 і y0 деякі прирости Dx і Dy так, щоб прямолінійний відрізок, який
з’єднує точки (x0;y0) і (x0+Dx;y0+Dy), не вийшов за межі околу, що
розглядається. Тоді формула Тейлора: ___ ДЩСЛІДЖЕННЯ Ф-ІЇ ДВОХ ЗМІННИХ 1. Екстремум ф-ії двох змінних Означення:
Нехай ф-ія z=f(x;y) визначена в деякому околі точки (x0;y0) і неперервна в цій точці. Якщо для всіх
точок (x;y) цього околу виконується нерівність Точки максимуму і мінімуму наз. точками екстремуму. Теорема
(необхідна умова екстремуму): Якщо ф-ія z=f(x;y)
має екстремум в точці (x0;y0), тоді в цій точці частинні похідні Теорема
(достатня умова екстремуму): Нехай ф-ія має екстремум у точці (x0;y0), неперервні частинні похідні першого і
другого порядку, причому AC-B2>0 і A<0 тоді (x0;y0) точка максимуму AC-B2>0 і A>0 тоді точка мінімуму AC-B2<0 екстремуму немає AC-B2=0 2. Умовний екстремум для ф-ії двох змінних Нехай на
відкритій множині D Ì R2 задано ф-ії u=f(x;y), v=j(x;y) і Е – множина точок, що задовольняють рівняння: Означення:
Рівняння Точки умовного максимуму та мінімуму називають точками умовного екстремуму. Умовний екстремум інколи називають відносним екстремумом. 3. Прямий метод знаходження точок умовного екстремуму (метод виключення) Якщо рівняння
зв’язку j(x;y)=0
можна розв’язати відносно змінної y, наприклад, y=j1(x),
тоді дослідження ф-ії y=f(x;y) на умовний екстремум зводиться до дослідження на
звичайний (безумовний) екстремум ф-ії однієї змінної: ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ПЕРШОГО ПОРЯДКУ 1. Вводні означення Означення: Дифуром називається рівняння, яку містить шукану похідну ф-ії. Найбільший порядок похідних називається порядком диф.рівняння. Означення матрець, типи матрець. Означення: Матрицею називається прямокутна таблиця чисел, яка має m рядків і n стовпчиків. Їх позначають великими літерами A,B,C і т.д. Типи матрець: Квадратна матриця, в якої елементи головної діагоналі дорівнюють одиниці, а всі інші нулю називається одиничною матрецею. Якщо всі елементи матриці, що знаходяться по один бік від головної діагоналі, дорівнюють нулю, то матриця назівається трикутною. Якщо візначник відмінний від нуля, то матриця називається неособливою або невиродженою. Якщо визначник дорівнює нулю, то матриця особліва або вироджена. Дії над матрицями. Сумою матрець одного порядку Добуток матриці Суми матрець і добутку матрець виконуються рівності: A+B=B+A; 2. aA=Aa 3. a(A+B)=aA+aB 4. (a+b)A=aA+bA 5. a(bA)=(ab)A Визначники першого, другого та третього порядку. Визначником другого порядку називається вираз вигляду: Визначником третього порядку називається вираз вигляду: Властивоті визначника. Властивість 1: Визначник не змінюється при транспортуванні. Властивість 2: Якщо один із рядків визначника складається з нулів, то такий визначник дорівнює нулю. Властивість 3: Якщо поміняти місцями будь-які два рядки визначника, то йго знак змінюється на протилежний. Властивість 4: Визначник, який має два однакові рядки, дорівнює нулю. Властивість 5: Якщо елементи будь-якого рядка визначника помножити на стале число С, то і визначник помножиться на С. Властивість 6: Визначник, який має два пропорційні рядки, дорівнює нулю. Властивість 7: Якщо всі елементи будь якого рядка визначника можна подати у вигляді суми двох доданків, то визначник бкде дорівнювати сумі двох визначників, у яких елементами цього рядка будуть відповідно перший доданок в першому визначнику і другий доданок в другому визначнику. Властивість 8: Визначник не змінюється, якщо до елементів будь-якого рядка додати відповідні елементи будь-якого іншого рядка, попередньо помножені не деяке число. Мінори та алгебраїчні доповнення. Визначник n-ого порядку. Мінором k-того порядку k є [1; n-1] називається визначник утворений з елементів, які стоять на перетені будь-яких k рядків і k товпчиків визначника. Алгебраїчним доповненням до мінора k-того порядку
є доповнювальний мінор (n-k)-того
порядку, взятий із знаком Якщо Означення: Визначником n–ого порядку називається число, яке дорівнює алгебраїчній сумі добутків елементів будь-якого рядка, або стовпчика на відповідні їм алгебраїчні доповнення. Правило Крамера. Якщо головний визначник,
де
Оберненна матриця. Матриця Оберенні матриці існують для квадратних не особливих матриць. Розв’язування систем рівнянь за допомогою оберненної матриці. Знаходять обернену матрицю таким чином: 1. 2. Алгебрарічні
доповнення 3. З
алгебрарічнихдоповнень сскладають матрицю в яку записують алгебраїчні
доповнення не в звичайному порядку, а в транспоновану -
4. N-вимірний векторний простір. Сукупність впорядкованих систем з n-дійсних чисел, для яких означені дії додавання і множення на число, утворює n-вимірний векторний простір. Елементами означенного таким чином простору будуть впорядковані системи чисел, які називаємо n-вимірними вектороми. Лінійна залежність та незалежність векторів. Ранг сукупності векторів. Система векторів
Якщо рівність (1) можлива лише у
випадку, коли всі Кількість векторів, що входять в будь-яку максимальну, лінійну незалежну підсистему даної системи векторів, називаюється рангом цієї системи. Базис. Перехід від одного базису до іншого. Базисом
векторного простору Матрицю Ранг матриці. Теорема Кронекера-Капеллі. Рангом матриці A розмірність mXn називається найвищий порядок відмінного від нуля мінора утворенного з елементів матриці. Позначають ранг – r чи r(A) Теорема: система лінійних алгебрарічних рівнянь сумісна тоді, і тількі тоді, коли ранг основної матриці дорівнює рангу розширенної матриці. Однородні системи рівнянь. Система однородних лнійних рівнянь має нетральні
розв’язки тоді, і тільки тоді, коли Метод Гаусса. Метод Жорданна-Гаусса. Розв’язання рівнянь методом Г-Ж здійснюється за допомогою розрахункової таблиці в яку записують коофіцієнти при невідомих, стовпчики вільних членів і контрольний стовпчик. В контрольний стовпчик 1-ого стовбця записують сумму елементів по рядках. Елементи контрольного стовпчика 2-ого і наступних таблиць продовжують за правилом прямокутника. Контроль здійснюють так: якщо скма елементів рядка, крім останньго дорівнює останньму елементу, то обчислення зроблене вірно. Розв’язування продовжується доки ми не отримаємо стільки одиночних векторів, скількі залишилося рівнянь. Власні числа та власні вектори матриці. Лінійне перетворення Розглянемо лінійне перетворення Такий вектор Квадратичні форми. Означення. Умови визначенності. 1.Квадратичною формою f від n-невідомих 2.Квадратична форма f від n-невідомих |
|
|