![]() |
||
Главная
Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии |
Реферат: Три знаменитые классические задачи древностиРеферат: Три знаменитые классические задачи древностиМинистерство Образования РБ. Средняя общеобразовательная школа №42 «Три знаменитые классические задачи древности» Выполнил: ученик 9 класса «Д» Иванов Иван Проверил: Леонова Вера Михайловна г. Улан – Удэ 2005 г. Введение Искусство построения геометрических фигур при помощи циркуля и линейки было в высокой степени развито в Древней Греции. Однако древним геометрам никак не удавалось выполнить некоторые построения, используя лишь циркуль и линейку, а построения, выполненные с помощью других инструментов, не считались геометрическими. К числу таких задач относятся так называемые три знаменитые классические задачи древности: о квадратуре круга о трисекции угла о удвоении S круга. Задача о квадратуре круга Одной из древнейших и
самых популярных математических задач, занимавшей умы людей на протяжении 3 – 4
тысячелетий, является задача о квадратуре круга, т.е. о построении с
помощью циркуля и линейки квадрата, равновеликому данному кругу. Если
обозначить радиус круга через r, то речь будет идти о построении квадрата,
площадь которого равна Шенкс вычислял.
Следовательно, он стоял в противоречии с требованиями задачи о квадратуре
круга, где требовалось найти решение построением. Работа, сделанная Шенксом, в
сущности бесполезна – или почти бесполезна. Но, с другой стороны, она может
служить довольно убедительным доказательством противного тому, кто, убедившись
доказательствами Линдеманна и др. или не зная о них, до сих пор ещё надеется,
что можно найти точное отношение длины окружности к диаметру. Можно вычислить
приближенное значение Следы задачи о квадратуре круга можно усмотреть ещё в древнеегипетских и вавилонских памятниках II тысячелетия до н.э. Однако непосредственная постановка задачи о квадратуре круга встречается впервые в греческих сочинениях V в. до н.э. В своём произведении « О изгнании » Плутарх рассказывает, что философ и астроном Анаксагор (500 – 428 г. до н.э.) находясь в тюрьме, отгонял печаль размышлениями над задачей о квадратуре круга. В комедии « Птицы » (414 г. до н.э.) знаменитый греческий поэт Аристофан, шутя на тему о квадратуре круга, вкладывает в уста Астронома Метона следующие слова: Возьму линейку, проведу прямую, И мигом круг квадратом обернётся, Посередине рынок мы устроим, А от него уж улицы пойдут – Ну, как на Солнце! Хоть оно само И круглое, а ведь лучи прямые!.. Эти стихи говорят о том, что задача уже была к тому времени очень популярна в Греции. Один из современников Сократа – софист Антифон считал, что квадратуру круга можно осуществить следующим образом: впишем в круг квадрат и, разделяя пополам дуги, соответствующие его сторонам, построим правильный вписанный восьмиугольник, затем шестнадцати угольник и т.д., пока не получим многоугольник, который в силу малости сторон сольётся с окружностью. Но так как можно построить квадрат равновеликий любому многоугольнику, то и круг можно квадрировать. Однако уже Аристотель доказал, что это будет только приближённое, но не точное решение задачи, так как многоугольник никогда не может совпасть с кругом.
Фигуры-мениски ALBM и ADCE, ограниченными круговыми дугами, и называются луночками. По теореме Пифагора:
Отношение Различные другие,
продолжавшиеся в течение тысячелетий попытки найти квадратуру круга
оканчивались неудачей. Лишь в 80-х годах 19в. было строго доказано, что
квадратура круга с помощью циркуля и линейки невозможна. Задача о квадратуре
круга становится разрешимой, если применять, кроме циркуля и линейки, еще
другие средства построения. Так, еще в 4в. до н.э. греческие математики
Динострат и Менехм пользовались для решения задачи одной кривой, которая была
найдена еще в 5в. до н.э. Гиппием Элидским. Однако ученых Древней Греции и их
последователей такие решения, находящиеся за пределами применения циркуля и
линейки, не удовлетворяли. Будучи вначале чисто геометрической задачей,
квадратура круга превратилась в течение веков в исключительно важную задачу
арифметико-алгебраического характера, связанную с числом Квадратура круга была в прежние времена самой заманчивой и соблазнительной задачей. Армия «квадратурщиков» неустанно пополнялась каждым новым поколением математиков. Все усиль были тщетны, но число их не уменьшалось. В некоторых умах доказательство, что решение не может быть найдено, зажигало ещё большее рвение к изысканиям. Что эта задача до сих пор не потеряла своего интереса, лучшим доказательством служит появление до сих попыток её решить. Задача о трисекции угла Знаменитой была в древности и задача о трисекции угла ( от латинских слов tria – три и section – рассечение , разрезание), т.е.о разделении угла на три равные части с помощью циркуля и линейки. Говорят, что такое ограничение вспомогательных приборов знаменитым греческим философом Платоном.
равен 60о, то
угла САВ, получаем искомое деление прямого угла MAN на три равных угла: Задача о трисекции угла
оказывается разрешимой и при некоторых других частных значениях угла (например,
для углов в
Рис. 3, а, б, в: конхоида Никомеда Задача о трисекции угла становится разрешимой и общем случае, если не ограничиваться в геометрических построениях одними только классическими инструментами, циркулем и линейкой. Попытки решения задачи с помощью инструментов и средств были предприняты еще в V в. до н.э. Так, например, Гиппий Элидский, знаменитый софист, живший около 420 г. до н.э., пользовался для трисекции угла квадратрисой. Александрийский математик Никомед ( II в. до н.э.) решил задачу о трисекции угла с помощью одной кривой, названной конхоидой Никомеда (рис. 3), и дал описание прибора для черчения этой кривой. Рис. 4 Рис. 5 Интересное решение задачи
о трисекции угла дал Архимед в своей книге «Леммы», в которой доказывается ,
что если продолжить хорду
значит,
Отсюда следует так
называемый способ «вставки» для деления на три равные части угла AOE. Описав окружность с
центром O и радиусом Вот ещё одно решение задачи о три секции угла при помощи линейки с двумя насечками предложенное Кемпе:
Построение На одной из сторон угла откладываем
от вершины B прямую BA = PQ.
Делим ВА пополам в точке М; проводим линии Возьмём теперь нашу линейку и приспособим её к уже полученной фигуре так, чтобы точка Р линейки лежала на прямой КМ, точка Q лежала бы
на прямой LM, и в тоже время продолжение PQ линейки проходило бы через вершину данного угла В. тогда прямая ВР и есть искомая, отсекающая третью часть угла В. Доказательство
Внешний же Вместе с тем Значит,
Итак: (Ч.Т.Д.). Приведённое выше решение задачи принадлежит Кемпле, который при этом поднял вопрос, почему Евклид не воспользовался делением линейки и процессом её приспособления для доказательства 4-й теоремы своей первой книги, где вместо этого он накладывает стороны одного треугольника на стороны другого. На это может ответить только, что в задачу Евклида и не входило отыскивание некоторой точки по средствам измерения и процесса приспособления линейки. В своих рассуждениях и доказательствах он просто накладывает фигуру на фигуру – и только. Задача об удвоении куба Удвоение куба – так называется третья классическая задача древнегреческой математики. Эта задача на ряду с двумя первыми сыграла большую роль в развитии математических методов. Задача состоит в построении куба, имеющий объём, вдвое больше объёма данного куба. Если обозначить через а ребро данного куба, то длина ребра х искомого куба должно удовлетворять уравнению x3 = 2a3, или x = Задача является естественным
обобщением аналогичной задачей об удвоении квадрата, которая решается просто:
стороной квадрата, площадь которого равна 2а2, служит отрезок
длиной а Задача об удвоении куба носит так же название «делосской задачи» в связи со следующей легендой. На острове Делос (в Эгейском море) распространялась эпидемия чумы. Когда жители острова обратились к оракулу за советом, как избавится от чумы, они получили ответ: «Удвойте жертвенник храма Аполлона». Сначала они считали, что задача легка. Так как жертвенник имел форму куба, они построили новый жертвенник, ребро которого было в два раза больше ребра старого жертвенника. Делосцы не знали, что таким образом они увеличили объём куба не в 2 раза, а в 8 раз. Чума ещё больше усилилась, и в ответ на вторичное обращение к оракулу последний посоветовал: «Получше изучайте геометрию…» Согласно другой легенде, бог приписал удвоение жертвенникам не потому, что ему нужен вдвое больший жертвенник, а потому, что хотел упрекнуть греков, «которые не думают о математике и не дорожат геометрией». Задачей удвоения куба еще в V в. до н.э. занимался Гиппократ Хиосский, который впервые свел ее к решению следующей задачи: построить «два средних пропорциональных» отрезка х, у между данными отрезками а, b, т.е. найти х и у, которые удовлетворяли в следующей непрерывной пропорции: а : х = х : у = у : b (1) Суть одного механического решения
задач об удвоении куба, относящегося к IV в. до н.э. , основано на методе двух средних
пропорциональных. Отложим на стороне прямого угла отрезок Имеем: или а : х = х : у = у : 2а. Отсюда
или т.е. Это значит что отрезок Архит Тарентский дал интересное стереометрическое решение «делосской задачи». После него, кроме Евдокса, дали свои решения Эратосфен, Никомед, Аполлоний, Герон, Папп и др.
Итак, все старания решить три знаменитые задачи при известных ограничивающих условиях (циркуль и линейка) привели только к доказательству, что подобное решение невозможно. Иной, пожалуй, по этому поводу скажет, что, следовательно, работа сотен умов, пытавшихся в течении столетий решить задачу, свелась ни к чему… Но это будет неверно. При попытках решить эти задачи было сделано огромное число открытий, имеющих гораздо больший интерес и значение, чем сами поставленные задачи. Попытка Колумба открыть новый путь в Индию, плывя всё на запад, окончилась, как известно, неудачей. И теперь мы знаем, что так необходимо и должно было случиться. Но гениальная попытка великого человека привела к «попутному» открытию целой новой части света, перед богатством и умственным развитием которого бледнеют ныне все сокровища Индии. Древность завещала решение всех трёх задач нашим временам. |
|
|