реферат
Главная

Рефераты по биологии

Рефераты по экономике

Рефераты по москвоведению

Рефераты по экологии

Краткое содержание произведений

Рефераты по физкультуре и спорту

Топики по английскому языку

Рефераты по математике

Рефераты по музыке

Остальные рефераты

Рефераты по авиации и космонавтике

Рефераты по административному праву

Рефераты по безопасности жизнедеятельности

Рефераты по арбитражному процессу

Рефераты по архитектуре

Рефераты по астрономии

Рефераты по банковскому делу

Рефераты по биржевому делу

Рефераты по ботанике и сельскому хозяйству

Рефераты по бухгалтерскому учету и аудиту

Рефераты по валютным отношениям

Рефераты по ветеринарии

Рефераты для военной кафедры

Рефераты по географии

Рефераты по геодезии

Рефераты по геологии

Реферат: Существование решения дифференциального уравнения и последовательные приближения

Реферат: Существование решения дифференциального уравнения и последовательные приближения

Министерство образования Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

«Самарский государственный университет»

механико-математический факультет

кафедра дифференциальных уравнений и теории управления

специальность прикладная математика

Существование решения дифференциального уравнения и последовательные приближения

Курсовая работа

Выполнил студент

2 курса 1222 группы

Труфанов Александр Николаевич

Научный руководитель

Долгова Ольга Андреевна

__________

работа защищена

«___»___________200_г.

Оценка _______________

зав. Кафедрой профессор д.ф.-м.н.

Соболев В.А.

Самара 2004

Теорема существования и единственности решения уравнения

Пусть дано уравнение

с начальным условием

Пусть в замкнутой области R функции и непрерывны). Тогда на некотором отрезке существует единственное решение, удовлетворяющее начальному условию .

Последовательные приближения определяются формулами:

  k = 1,2....

Задание №9

Перейти от уравнения

 

 к системе нормального вида и при начальных условиях

, ,

построить два последовательных приближения к решению.

Произведем замену переменных

;

 и перейдем к системе нормального вида:

Построим последовательные приближения

       

Задание №10

Построить три последовательных приближения  к решению задачи

,

Построим последовательные приближения

Задание №11

а) Задачу

,

свести к интегральному уравнению и построить последовательные приближения

б) Указать какой-либо отрезок, на котором сходятся последовательные приближения, и доказать их равномерную сходимость.

Сведем данное уравнение к интегральному :

Докажем равномерную сходимость последовательных приближений

С помощью метода последовательных приближений мы можем построить последовательность

непрерывных функций, определенных на некотором отрезке , который содержит внутри себя точку . Каждая функция последовательности определяется через предыдущую при помощи равенства

 i = 0, 1, 2 …

Если график функции  проходит в области Г, то функция  определена этим равенством, но для того, чтобы могла быть определена следующая функция , нужно, чтобы и график функции  проходил в области Г. Этого удается достичь, выбрав отрезок достаточно коротким. Далее, за счет уменьшения длины отрезка , можно достичь того, чтобы для последовательности  выполнялись неравенства:

, i = 1, 2, …,

где 0 < k < 1. Из этих неравенств вытекает следующее:

, i = 1, 2, …,

Рассмотрим нашу функцию на достаточно малом отрезке, содержащим , например, на . На этом промежутке все последовательные приближения являются непрерывными функциями. Очевидно, что т.к. каждое приближение представляет из себя функцию от бесконечно малого более высокого порядка, чем предыдущее приближение, то выполняются и описанные выше неравенства. Из этих неравенств следует:

что и является условием равномерной сходимости последовательных приближений.

С другой стороны, на нашем отрезке выполняется , что также совершенно очевидно. А так как последовательность  сходится, то последовательность приближений является равномерно сходящийся на этом отрезке.

Список использованной литературы

1.   Л.С. Понтрягин. «Обыкновенные дифференциальные уравнения», М.: Государственное издательство физико-математической литературы, 1961

2.   А.Ф. Филиппов «Сборник задач по дифференциальным уравнениям», М.: Интеграл-Пресс, 1998

3.   О.П. Филатов «Лекции по обыкновенным дифференциальным уравнениям»,Самара: Издательство «Самарский университет», 1999

4.   А.Н. Тихонов, А.Б. Васильева «Дифференциальные уравнения», М.: Наука. Физматлит, 1998


 
© 2012 Рефераты, доклады, дипломные и курсовые работы.