![]() |
||||||||
Главная
Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии |
Реферат: Самоаффинные фрактальные множества II. Размерности длины и поверхностиРеферат: Самоаффинные фрактальные множества II. Размерности длины и поверхности1. ВведениеПредставляется соблазнительным попытаться измерить длину кривой с помощью измерительного циркуля, последовательно уменьшая его раствор, или измерить площадь поверхности с помощью все более и более мелкой триангуляции. Для обычных кривых такая процедура дает хороший результат. В то же время известно, что уже для обычных поверхностей (например, для цилиндра) возникают аномалии; основная аномалия проявляется в так называемом парадоксе площадей Шварца, который заслуживает широкой известности и будет обсуждаться ниже. Для самоподобных кривых эта процедура снова приводит к фрактальной размерности. Попытаемся использовать такую процедуру для самоаффинных фракталов и покажем, что размерности, к которым она приводит, отличаются от массовой и клеточной размерностей. 2. Измерение длины самоаффинных фрактальных кривых, являющихся графиками функций 2.1. Измерение длины с использованием «сосиски» Минковского дает локальную и глобальную размерности, совпадающие с DML и DMGСледуя Минковскому и Булигану, определим приближенную длину кривой В( В одном из многих методов нахождения длины спрямляемой кривой используется измерительный циркуль, перемещающийся вдоль кривой. На кривой могут быть узлы,
т. е. кратные точки произвольного порядка; достаточно, чтобы точки кривой были упорядочены, например «во времени». Начнем с исходной точки р0.
Первая точка Р1 будет первым выходом кривой из круга с центром в ро и радиусом Можно выбрать в качестве P1 точку последнего, а не первого выхода вдоль кривой. И можно также двигаться назад. Для самоподобной кривой находим L( Для наших самоаффинных кривых ситуация оказывается совершенно иная. Кроме локальной размерности при Если воспользоваться этим обстоятельством, то рассмотрение последних выходов становится простым. Покроем нашу кривую (b''k)2-H квадратами со стороной (b")k<<1; это дает D>2—H. Далее добавим кольцо из 8 таких же квадратов вокруг каждой ячейки и тем самым увеличим сторону втрое. Ясно, что (b"k)2-H шагов циркуля с раствором 3(b")-k достаточно, чтобы пройти вдоль кривой, поэтому размерность, полученная с помощью измерительного циркуля, меньше 2—Н. Следовательно, она равна 2-H. 2.3. Нахождение длины с помощью измерительного циркуля при фиксации первых выходов дает «аномальные размерности». Локальное значение размерности при малыхВ этом разделе приведены результаты, полученные в работе [I]. При он в основном остается параллельным оси t, и L( Если, наоборот, Это чрезвычайно странное значение может превышать 2 и является аномальным вдвойне: оно противоречит значению 2-Н, которое получалось при других локальных определениях фрактальной размерности. С другой стороны, те, кто знакомы с фрактальным броуновским движением, могут отождествить 1/Н с фрактальной размерностью следа (в некотором E-мерном евклидовом пространстве RE при Е > 1/Н) движения, для которого координаты Е представляют собой независимые реализации Вн(t). В этом случае попытка использовать необычный путь для измерения фрактальной размерности для одного множества в действительности заканчивается измерением значения, которое все пути дают для некоторого другого множества. 2.4. Размерности, связанные с покрытием аффинными прямоугольникамиВ утом разделе мы хотим связать измерение длины с вопросами, обсуждавшимися в разд. 8, части I статьи. В обоих предельных случаях К этому интересному случаю могут быть применены аргументы, аналогичные использованным в разд. 2.3. Локальное значение. Использование измерительного циркуля раствором (b")-k << 1 потребует Nk шагов, и поэтому показатель для приближенного значения длины равен logb"(b"N-1)=1 -logb"N, так что размерность равна logb" N. В частности, в случае Пеано N = b'b" и размерность равна 1 + 1/H. Глобальная размерность. Она равна logb'N и в случае Пеано принимает значение 1+ Н. 4. Парадокс площадей ШварцаТриангуляция обычных поверхностей оказывается делом гораздо более сложным, чем можно было бы ожидать. В частности, в конце XIX в. Герман Амандус Шварц
показал, что для случая цилиндра единичного радиуса и единичной высоты безобидный на первый взгляд метод триангуляции может дать для площади боковой
поверхности любую величину: от истинного значения 2 Поступим следующим образом: разделим цилиндр по высоте на п слоев плоскостями z=р/п (р—целое число больше нуля) и выделим на окружностях с
четным номером уровня точки Прямое вычисление показывает, что для больших m эта площадь приближенно равна 2 Причиной такого поведения является следующее обстоятельство: при переходе к пределу т/п Реакция прагматика была бы следующей — избегать узких треугольников. Ответ математика: «парадокс площадей Шварца» относился к числу проблем,
способствовавших .развитию современной математики. В частности, этот парадокс стимулировал Минковского дать корректные определения длины и площади через
объемы все более тонких «сосисок» Минковского для кривых и все более тонких «шарфов» Минковского для поверхностей. Эти множества состоят из всех точек
внутри
В отличие от треугольников все интервалы подобны друг другу, и поэтому для обычной кривой в плоскости аналога парадокса Шварца не существует. Его не
существует также и для самоподобных фрактальных кривых; действительно, в [2] отмечено, что измерения длины с переменной точностью е могут быть проведены
многими различными путями, но во всех случаях длина меняется по одному и тому же закону: пропорционально е1-0. Но для самоаффинных
кривых, как показано в разд. 2.1—2.3, ситуация более сложная. Здесь длина растет как Мы возвращаемся к размерностям DBL и DBG. 5.2. Определение площади фрактального рельефа с помощью триангуляцииВыберем квадратные плитки с Грубая триангуляция. Если пренебречь деталями с размерами, меньшими чем критическое значение xc = ус, то в этом приближении моя броуновская модель рельефа Земли имеет вполне определенную площадь, ненамного превышающую площадь проекции рельефа на идеализированную плоскость (или сферу). Эта ситуация резко отличается от той, которая имела место для береговой линии. Рассмотрим в качестве примера два негауссовских ландшафта (см. [2], вклейка С 13). Они получены из одного и того же гауссовского ландшафта с помощью
нелинейных преобразований, в которых предполагалось, что величина tc очень мала для долины на верхнем рисунке С 13 и для плато на нижнем рисунке С
13, и в то же время величина tc очень велика для горной цепи на верхнем рисунке С 13 и в каньоне на нижнем рисунке. Далее, я уже указывал в
своих лекциях, что хорошие взлетные полосы аэропортов неровны в той же степени, что и Гималаи, только их вертикальный масштаб значительно меньше. Теперь мы
видим, что эти количественные различия приводят к качественным эффектам. Прежде всего, как подсказывают обычные наблюдения и здравый смысл, у аэропорта имеется
вполне определенная площадь, даже при измерении самой точной линейкой. В Гималаях же обычные фотографии, снятые издалека, показывают, что «средний
наклон» порядка Тонкая триангуляция. В этом случае площадь наверняка может быть произвольно большой, но как быстро она будет расти с уменьшением размера
треугольников? Каждый из треугольников-близнецов в ячейке имеет длину ~ b-Hk и высоту ~b-k, он очень узкий, и его площадь ~b-(H+1)k.
Полное число треугольников b2k = Следующая сетка, которую мы рассмотрим, самоаффинна и включает (b'b'')k прямоугольников шириной b' -k я высотой b" -k, причем b' > b". Площадь каждого из треугольников теперь ~ ((b")-1(b')1-H)k, а аномальная размерность равна log(b'b")/log(b"b'H). Она может принимать значение между 2/(H+1) и 1/H,и это есть фрактальная форма парадокса площадей Шварца. |
|
||||||
|