Главная
Рефераты по биологии Рефераты по экономике Рефераты по москвоведению Рефераты по экологии Краткое содержание произведений Рефераты по физкультуре и спорту Топики по английскому языку Рефераты по математике Рефераты по музыке Остальные рефераты Рефераты по авиации и космонавтике Рефераты по административному праву Рефераты по безопасности жизнедеятельности Рефераты по арбитражному процессу Рефераты по архитектуре Рефераты по астрономии Рефераты по банковскому делу Рефераты по биржевому делу Рефераты по ботанике и сельскому хозяйству Рефераты по бухгалтерскому учету и аудиту Рефераты по валютным отношениям Рефераты по ветеринарии Рефераты для военной кафедры Рефераты по географии Рефераты по геодезии Рефераты по геологии |
Реферат: Приложения производнойРеферат: Приложения производнойЛицей информационных технологий Реферат Производная и ее приложения Выполнил: ученик 11А класса Новиков А. Проверила: Шекера Г.В. г.Хабаровск 2004 СодержаниеВведение……………………………………………………………………………………….…31. Понятие производной……………………………………………………....………………....42. Геометрический смысл производной…………………….………………….......……..43. Физический смысл производной……………………………………………………….…….54. Правила дифференцирования………………………………………………………….……..65. Производные высших порядков……………………………………………………….……..76. Изучение функции с помощью производной6.1.Возрастание и убывание функции. Экстремум функции……………………………..86.2.Достаточные условия убывания и возрастания функции.Достаточные условия экстремума функции………………..…………………...…….116.3 .Правило нахождения экстремума………………………………………………….....12 6.4.Точка перегиба графика функции………………………………………………...…...126.5.Общая схема исследования функции и построение ее графика……………………..156.5. Касательная и нормаль к плоской кривой…………………………..………………..157.Экономическое приложение производной.7.1.Экономическая интерпретация производной………………………………...……….167.2. Применение производной в экономической теории...………………………..……..197.3. Использование производной для решения задач по экономической теории….…...218. Применение производной в физике…………………………………………………….…..239. Применение производной в алгебре9.1. Применение производной к доказательству неравенств…………………………....259.2. Применение производной в доказательстве тождеств………………………….…...289.3. Применение производной для упрощения алгебраическихи тригонометрических выражений……………………………………………….……299.4.Разложение выражения на множители с помощью производной…………………...309.5. Применение производной в вопросах существования корней уравнений………....31Заключение……………………………………………………………………………………...32Список литературы……………………………………………………………………………..33 Введение Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно. Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики. Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении: аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы. В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней. Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др. Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин. Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными. В своей же работе я хочу подробнее остановится на приложениях производной. 1. Понятие производнойПри решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом Тот
процесс, с помощью
которого из
данной функции
f(x)
получают новую
функцию f
' (x), называют
дифференцированием
и состоит он
из следующих
трех шагов: 3)
считая x
постоянным,
а x
0,
находим,
который
обозначаем
через f
' (x), как
бы подчеркивая
тем самым, что
полученная
функция зависит
лишь от того
значения x,
при котором
мы переходим
к пределу. Заметим, что если при некотором значении x, например при x=a, отношение при x0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a) не имеет производной или не дифференцируема в точке x=a. 2. Геометрический смысл производной.Рассмотрим график функции у = f (х), дифференцируемой в окрестностях точки x0
f(x) Рассмотрим произвольную прямую, проходящую через точку графика функции - точку А(x0, f (х0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x . Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положительному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ. Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А. Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим или tg =f '(x0), так как -угол наклона касательной к положительному направлению оси Ох , по определению производной. Но tg = k - угловой коэффициент касательной, значит, k = tg = f '(x0). Итак, геометрический смысл производной заключается в следующем: Производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0. 3. Физический смысл производной.Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0; t0+ ∆t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е. Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0. lim Vср (t) = (t0) - мгновенная скорость в момент времени t0, ∆t → 0. а lim = ∆x/∆t = x'(t0) (по определению производной). Итак, (t) =x'(t). Физический смысл производной заключается в следующем: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0 Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени. (t) = x'(t) - скорость, a(f) = '(t) - ускорение, или a(t) = x"(t). Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении: φ = φ(t) - изменение угла от времени, ω = φ'(t) - угловая скорость, ε = φ'(t) - угловое ускорение, или ε = φ"(t). Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня: m = m(х) - масса, x [0; l], l - длина стержня, р = m'(х) - линейная плотность. С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω2x(t) = 0, где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m). Уравнение вида у" + ω2y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция у = Asin(ωt + φ0) или у = Acos(ωt + φ0), где А - амплитуда колебаний, ω - циклическая частота, φ0 - начальная фаза. 4. Правила дифференцирования
Производная степенно-показательной функции , где . . Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам дифференцирования найти производную затруднительно. Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную (1) Отношение называется логарифмической производной функции . Из формулы (1) получаем . Или Формула (2) дает простой способ нахождения производной функции . 5. Производные высших порядковЯсно, что производнаяфункции y =f (x) есть также функция от x: Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением можем написать Очень
удобно пользоваться
также обозначением
,
указывающим,
что функция
y=f(x) была
продифференцирована
по x
два
раза. Вообще n-я производная или производная n-го порядка функции y=f(x) обозначается символами Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции. Например: 1) ; ; ; ...; ; . Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие – переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной. Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков. 6. Изучение функции с помощью производной6.1.Возрастание и убывание функции. Экстремум функции.Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) > f(x1) при x2 > x1.
График возрастающей функции показан на рисунке1(а). Если из неравенства x2 > x1 вытекает нестрогое неравенство f (x2) f (x1), то функция f (x) называется неубывающей в интервале (a, b ). Пример такой функции показан на рисунке 2(а). На интервале [ x0 , x1 ] она сохраняет постоянное значение C Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если f(x2) < f(x1) при x2 > x1. Из
этого определения
следует, что
у убывающей
в интервале
( a, b )
функции
f (x)
в любой
точке этого
интервала
приращения
x
и
y
имеют
разные знаки. График
убывающей
функции показан
на рисунке
1(б). Если из неравенства x2 > x1 вытекает нестрогое неравенство f(x2) f(x1), то функция f (x) называется невозрастающей в интервале ( a, b ). Пример такой функции показан на рисунке 2(б). На интервале [ x0 , x1 ] она сохраняет постоянное значение C. Теорема
1.
Дифференцируемая
и возрастающая
в интервале
( a, b )
функция
f (x)
имеет
во всех точках
этого интервала
неотрицательную
производную. Пусть
данная непрерывная
функция убывает
при возрастании
x от x0
до x1,
затем при возрастании
x от x1
до x2
- возрастает,
при дальнейшем
возрастании
x от x2
до x3
она вновь убывает
и так далее.
Назовем такую
функцию
колеблющейся. На рисунке 4(a) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она возрастает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - убывает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)f (x). Значение
f (x0)
функции f
(x), при
котором выполняется
вышеуказанное
неравенство,
называется
максимальным
значением
функции f
(x) или
просто максимумом. принадлежащих
некоторой
достаточно
малой окрестности
точки x0
. На рисунке 4(б) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она убывает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - возрастает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)f (x). Значение
f (x0)
функции f
(x), при
котором выполняется
вышеуказанное
неравенство,
называется
минимальным
значением
функции f
(x) или
просто минимумом. достаточно
малой окрестности
точки x0
. Например функция, изображенная на рисунке 3, достигает наибольшего значения f (x) в точке x2 , наименьшего - в точке x1 интервала [ x0, x3 ]. На рисунке 5 изображена функция, имеющая бесконечное число минимумов и максимумов.
Теорема
3 (необходимый
признак экстремума).
Если функция
f (x) имеет в точке
x0
экстремум, то
ее производная
в данной точке
или равна нулю
или не существует.
Таким образом, необходимым признаком существования в точке x0 экстремума функции f (x) является выполнение следующего условия: в точке x0 производная f' (x) или равна нулю, или не существует. Этот признак не является достаточным условием существования экстремума функции f (x) в точке x0 : можно привести много примеров функций, удовлетворяющих этому условию при x = x0 , но, однако, не достигающих экстремума при x = x0. Например, производная функции y = x3 при x0 = 0 равна нулю, однако эта функция при x0 = 0 не достигает экстремального значения. 6.2.Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции. Теорема
4.Если
функция f(x) имеет
в каждой точке
интервала
(a, b) неотрицательную
производную,
то она является
неубывающей
функцией в
этом интервале. Теорема
6. (первый
достаточный
признак экстремума).
Если
производная
f '(x) функции f(x)
обращается
в нуль в точке
x0
или не существует
и при переходе
через x0
меняет свой
знак, то функция
f(x) имеет в этой
точке экстремум
(максимум, если
знак меняется
с "+" на "-", и минимум,
если знак меняется
с "-" на "+"). 6.3 .Правило нахождения экстремума 1°. Чтобы найти экстремум функции, надо: 1) найти производную данной функции; 2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума; 3) определить знак производной в каждом из промежутков, отграниченных стационарными точками ( стационарными точками называют точки в которых производная равна 0); 4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции; 5) заменить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции. Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной. 6.4.Точка перегиба графика функции.Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вверх, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит под касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок 1а).
Из определения выпуклости вверх (вниз) кривой y = f(x) в точке x0 следует, что для любой точки x из интервала (x0 - h, x0 + h), не совпадающей с точкой x0, имеет место неравенство f(x) - y < 0 ( f(x) - y > 0) где f(x) - ордината точки M кривой y = f(x), y - ордината точки N касательной y - y0 = f '(x0 )(x - x0 ) к данной кривой в точке A. (смотри рисунок 1, а, б). Ясно, что и наоборот, если для любой точки x интервала (x0 - h, x0 + h), не совпадающей с x0, выполняется неравенство f(x) - y < 0 (f(x) - y > 0), то
кривая y = f(x)
в точке x0
обращена выпуклостью
вверх (вниз).
Таким образом мы показали, что если в интервале (a, b) кривая y = f(x) обращена выпуклостью вверх, то с увеличением аргумента x функция y = f '(x) убывает. Поэтому вторая производная f ''(x) функции f(x), как производная убывающей фунции f '(x), будет отрицательна или равна нулю в интервале (a, b): f ''(x)0.
Докажем, что и наоборот, если f ''(x)0 в некотором интервале (a, b), то в этом интервале кривая y = f (x) обращена выпуклостью вверх; если f ''(x)0 в интервале (a, b), то в этом интервале кривая обращена выпуклостью вниз. Запишем уравнение касательной y - y0 = f '(x0 )(x - x0 ) к кривой y = f (x) в точке x0, где a < x0 b, в виде y = y0 + f '(x0 )(x - x0 ). Очевидно, y0 = f(x0 ), а потому последнее уравнение можно записать в виде y = f(x0 ) + f '(x0 )(x - x0 ). (1) Но, согласно формуле Тейлора, при n = 2 имеем: (2) Фиксируя x в интервале (a, b) и вычитая почленно из уравнения (2) уравнение (1), получим: (3) Если f ''[x0 + (x - x0 )]0, где 0 < < 1, то имеем f(x) - y 0 откуда
следует, что
кривая y = f(x)
в точке x
обращена выпуклостью
вверх.
Теорема 8. Пусть функция f(x) имеет непрерывную вторую производную f ''(x) и пусть A[x0 ; f(x0 )] - точка перегиба кривой y = f(x). Тогда f ''(x0 ) = 0 или не существует. Доказательство. Рассмотрим для определенности случай, когда кривая y = f(x) в точке перегиба A[x0 ; f(x0 )] переходит от выпуклости вверх в выпуклости вниз (рис.4). Тогда при достаточно малом h в интервале (x0 - h, x0 ) вторая производная f ''(x) будет меньше нуля, а в инетрвале (x0, x0 +h) - больше нуля. Но f ''(x) - функция непрерывная, а потому, переходя от отрицательных значений к положительным, она при x = x0 обращается в нуль: f ''(x0 ) = 0.
Итак,
f ''(0)
не существует.
Но тем не менее
точка O(0; 0)
является точкой
перегиба, так
как при x < 0 f ''(x) > 0
и кривая выпукла
вниз, а при
x > 0 f ''(x) < 0
и кривая выпукла
вверх. Теорема
9. Если
вторая производная
f ''(x)
непрерывна
и меняет знак
при
x = x0,
то
точка
A[x0 ;
f(x0 )]
является
точкой перегиба
кривой
y = f(x)
при
условии, конечно,
что в точке
A
существует
касательная. 6.5.Общая схема исследования функции и построение ее графика. 1.
Находим область
определения
функции f(x) 6.6. Касательная и нормаль к плоской кривой. Пусть
даны кривая
y = f(x)
и точка M (x1 ; y1)
на ней. Требуется
составить
уравнения
касательной
и нормали (смотри
рисунок). Нормалью называется прямая, проходящая через точку касания перпендикулярно касательной. поэтому ее угловой коэффициент равен , а уравнение записывается в виде 7.Экономическое приложение производной.7.1.Экономическая интерпретация производнойВ экономической теории активно используется понятие «маржинальный», что означает «предельный». Введение этого понятия в научный оборот в XIX веке позволило создать совершенно новый инструмент исследования и описания экономических явлений - инструмент, посредством которого стало возможно ставить и решать новый класс научных проблем. Классическая экономическая теория Смита, Рикардо, Милля обычно имела дело со средними величинами: средняя цена, средняя производительность труда и т.д. Но постепенно сложился иной подход. Существенные закономерности оказалось можно обнаружить в области предельных величин. Предельные или пограничные величины характеризуют не состояние (как суммарная или средняя величины.), а процесс, изменение экономического объекта. Следовательно, производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Надо заметить, что экономика не всегда позволяет использовать предельные величины в силу прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно отвлечься от дискретности и эффективно использовать предельные величины. Рассмотрим ситуацию: пусть y - издержки производства, а х - количество продукции, тогда x- прирост продукции, а y - приращение издержек производства. В этом случае производная выражает предельные издержки производства и характеризует приближенно дополнительные затраты на производство дополнительной единицы продукции ,где MC – предельные издержки (marginal costs); TC – общие издержки (total costs); Q - количество.
Г С С C(t) еометрическая интерпретация предельных издержек - это тангенс угла наклона касательной к кривой в данной точке (см. рис.).А E A налогичным образом могут быть определены и многие другие экономические величины, имеющие предельный характер.Д Q B ругой пример - категория предельной выручки (MR— marginal revenue) — это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта.Она представляет собой первую производную от выручки: . При этом R= PQ, где R–выручка (revenue); P–цена (price). Таким образом , MR= P. Это равенство верно относительно условий совершенной конкуренции, когда экономические агенты каждый по отдельности не могут оказать влияния на цену. Обратимся к теориям потребления: кардиналистской и ординалистской. Кардиналистский (количественный) подход к теории цен предполагает равное влияние величин полезности товара и затрат на его производства на формирование цены. В основе рассматриваемого подхода - исследования А. Маршалла. Ординалистский (Порядковый) подход к теории цен разрабатывался И. Фишером, В. Парето. Суть данного подхода состоит в том, что потребители, имеющие определенный уровень доходов, сравнивают между собой цены и полезность различных наборов экономических благ и отдают предпочтение тем наборам, которые при сравнительно низких ценах имеют максимальную полезность для конкретного потребителя. В соответствии с первой, суммарную полезность U для любого субъекта, если в экономике существует n потребительских благ в объемах х1, x2,… хn, можно выразить в виде кардиналистской функции полезности: U= U(х1, x2,… xn). Предельные полезности MU товаров выступают в качестве ее частных производных: . Они показывают, на сколько изменяется полезность всей массы благ, достающихся субъекту, при бесконечно малом приращении количества блага i (i=1,2…n) В ординалистской теории полагается, что потребитель оценивает полезность не отдельных благ, а потребительских наборов; что он способен сопоставить полезности наборов товаров. Ординалистская функция полезности исследована подробно, значительный вклад в ее изучение внес Дж. Хикс. После его трудов началось прогрессирующее вытеснение понятия "предельная полезность" категорией предельной нормы замещения (MRS – marginal rate of substitution). Предположим, что происходит замещение товара y товаром х при движении сверху вниз вдоль кривой безразличия. Предельная норма замещения товара y товаром x показывает, какое количество товара x необходимо для того, чтобы компенсировать потребительскую утрату единицы товара y. Они определяются так: . Т.к. dy отрицательно, знак "-" вводится, чтобы MRS была больше нуля. Итак, предельная норма замещения геометрически есть касательная к кривой безразличия в данной точке. Значение предельной нормы замещения по абсолютной величине равно тангенсу угла наклона касательной к кривой безразличия. Приведем еще один пример элементарного анализа на микроуровне, который имеет аналог и на макроуровне. Любой индивид свой доход Y после уплаты налогов использует на потребление C и сбережение S. Ясно, что лица с низким доходом, как правило, целиком используют его на потребление, так что размер сбережения равен нулю. С ростом дохода субъект не только больше потребляет, но и больше сберегает. Как установлено теорией и подтверждено эмпирическими исследования, потребление и сбережение зависят от размера дохода: Y= C(Y) + S(Y). Зависимость потребления индивида от дохода называется функцией склонности к потреблению или функцией потребления. Использование производной позволяет определить такую категорию, как предельную склонность к потреблению MPC (marginal property to consume), показывающую долю прироста личного потребления в приросте дохода: . По мере увеличения доходов MPC уменьшается. Последовательно определяя сбережения при каждом значении дохода, можно построить функцию склонности к сбережению или функцию сбережения. Долю прироста сбережений в приросте дохода показывает предельная склонность к сбережению MPS(marginal propensity to save): . С увеличением доходов MPS увеличивается. Еще одним примером использования производной в экономике является анализ производственной функции. Поскольку ограниченность ресурсов принципиально не устранима, то решающее значение приобретает отдача от факторов производства. Здесь также применима производная, как инструмент исследования. Пусть применяемый капитал постоянен, а затраты труда увеличиваются. Можно ввести в экономический анализ следующую категорию - предельный продукт труда MPL(marginal product of labor) – это дополнительный продукт, полученный в результате дополнительных вложений труда (L – labor) при неизменной величине капитала:. Если вложения осуществляются достаточно малыми порциями, то , т.к. dY - результат, dL - затраты, то MPL – предельная производительность труда. Аналогично, MPk - предельный продукт капитала - дополнительный продукт, полученный в результате дополнительных вложений капитала K при неизменной величине труда:. Если вложения осуществляются малыми порциями, то . MPk - характеризует предельную производительность капитала. Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции. Определение: Эластичностью функции Еx(y) называется предел отношения относительного приращения функции y к относительному приращению переменной x при x0: . Эластичность функции показывает приближенно, на сколько процентов изменится функция y= f(x), при изменении независимой переменной x на 1%. Приведем несколько конкретных иллюстраций такой зависимости. Прямой коэффициент эластичности спроса по цене устанавливает, на сколько процентов увеличивается (уменьшается) спрос Q на товар i при уменьшении (увеличении) его цены P на 1%: . Перекрестный коэффициент эластичности спроса по цене показывает, на сколько процентов изменится спрос на товар i при однопроцентных колебаниях цены товара j (j = 1,2,…n): . Количественную сторону взаимодействия дохода и спроса отражает коэффициент эластичности спроса по доходу, который указывает, на сколько процентов изменится спрос на i-тый товар Qi если доход, предназначенный на текущее потребление, изменится на 1%: . Можно привести и другие примеры использования производной при фокусировке различных категорий и закономерностей. Дальнейшее раскрытие экономического смысла хотелось бы осуществить через рассмотрение экономической интерпретации математических теорем. 7.2. Применение производной в экономической теории.Проанализировав экономический смысл производной, нетрудно заметить, что многие, в том числе базовых законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем. Вначале рассмотрим экономическую интерпретацию теоремы: если дифференцируемая на промежутке X функция y= f(x) достигает наибольшего или наименьшего значения во внутренней точке x0 этого промежутка, то производная функции в этой точке равна нулю, то есть f’(x0) = 0. Один из базовых законов теории производства звучит так: "Оптимальный для производителя уровень выпуска товара определяется равенством предельных издержек и предельного дохода". То есть уровень выпуска Qo является оптимальным для производителя, если MC(Qo)=MR(Qo), где MC - предельные издержки, а MR - предельный доход. Обозначим функцию прибыли за П(Q). Тогда П(Q) = R(Q) — C(Q), где R – прибыль, а C – общие издержки производства. Очевидно, что оптимальным уровнем производства является тот, при котором прибыль максимальна, то есть такое значение выпуска Qo, при котором функция П(Q) имеет экстремум (максимум). По теореме Ферма в этой точке П’(Q) = 0. Но П’(Q)=R’(Q) - C’(Q), поэтому R’(Qo) = C’(Qo), откуда следует, что MR(Qo) = MC(Qo). Другое важное понятие теории производства - это уровень наиболее экономичного производства, при котором средние издержки по производству товара минимальны. Соответствующий экономический закон гласит: “оптимальный объем производства определяется равенством средних и предельных издержек”. Получим это условие как следствие сформулированной выше теоремы. Средние издержки AC(Q) определяются как , т.е. издержки по производству всего товара, деленные на произведенное его количество. Минимум этой величины достигается в критической точке функции y=AC(Q), т.е. при условии , откуда TC’(Q)Q—TC(Q) = 0 или , т.е. MC(Q)=AC(Q). Понятие выпуклости функции также находит свою интерпретацию в экономической теории. Один из наиболее знаменитых экономических законов - закон убывающей доходности - звучит следующим образом: "с увеличением производства дополнительная продукция, полученная на каждую новую единицу ресурса (трудового, технологического и т.д.), с некоторого момента убывает". Иными словами, величина , где y - приращение выпуска продукции, а x - приращение ресурса, уменьшается при увеличении x. Таким образом, закон убывающей доходности формулируется так: функция y= f(x), выражающая зависимость выпуска продукции от вложенного ресурса, является функцией, выпуклой вверх. Другим базисным понятием экономической теории является функция полезности U= U(x), где х - товар, а U – полезность (utility). Эта величина очень субъективная для каждого отдельного потребителя, но достаточно объективная для общества в целом. Закон убывающей полезности звучит следующим образом: с ростом количества товара, дополнительная полезность от каждой новой его единицы с некоторого момента убывает. Очевидно, этот закон можно переформулировать так: функция полезности является функцией, выпуклой вверх. В такой постановке закон убывающей полезности служит отправной точкой для математического исследования теории спроса и предложения. 7.3. Использование производной для решения задач по экономической теории.Задача 1. Цементный завод производит Х т. цемента в день. По договору он должен ежедневно поставлять строительной фирме не менее 20 т. цемента. Производственные мощности завода таковы, что выпуск цемента не может превышать 90 т. в день. Определить, при каком объеме производства удельные затраты будут наибольшими (наименьшими), если функция затрат имеет вид: К=-х3+98х2+200х. Удельные затраты составят К/х=-х2+98х+200 Наша задача сводится к отысканию наибольшего и наименьшего значения функции У= -х2+98х+200. На промежутке [20;90]. Вывод: x=49, критическая точка функции. Вычисляем значение функции на концах промежутках и в критической точке. f(20)=1760 f(49)=2601 f(90)=320. Таким образом, при выпуске 49 тонн цемента в день удельные издержки максимальны, это экономически не выгодно, а при выпуске 90 тонн в день минимально, следовательно можно посоветовать работать заводу на предельной мощности и находить возможности усовершенствовать технологию, так как дальше будет действовать закон убывающей доходности. И без реконструкции нельзя будет увеличить выпуск продукции. Задача 2.Задача: Предприятие производит Х единиц некоторой однородной продукции в месяц. Установлено, что зависимость финансовых накопления предприятия от объема выпуска выражается формулой f(x)=-0,02x^3+600x -1000. Исследовать потенциал предприятия. Функция исследуется с помощью производной. Получаем, что при Х=100 функция достигает максимума. Вывод: финансовые накопления предприятия растут с увеличением объема производства до 100 единиц, при х =100 они достигают максимума и объем накопления равен 39000 денежных единиц. Дальнейший рост производства приводит к сокращению финансовых накоплений. Задача 3. Спрос-это зависимость между ценой единицы товара и количеством товара, которое потребители готовы купить при каждой возможной цене, за определенный период времени и при прочих равных условиях. Зависимость спроса от цены описывается функцией , Данная функция исследуется с помощью производной: Производная меньше нуля, если P>=0. Определим точку перегиба функции. Такой точкой является точка (0,5;0,6), т.е. при P1/2 спрос убывает все быстрее.Задача 4. Выручка от реализации товара по цене p составляет: (Денежных единиц), где . Исследуем эту функцию с помощью производной. Производная этой функции: положительна, если p1/2, это означает, что с ростом цены выручка в начале увеличивается ( несмотря на падение спроса) и p=1/2 достигает максимального значения , дальнейшее увеличение цены не имеет смысла, т.как оно ведет к сокращению выручки. Темп изменения выручки выражается второй производной. темп положительный темп отрицательный На промежутке (0,1/2) функция возрастает все медленнее, то есть дальнейшее повышение цены не выгодно. Сначала выручка убывает с отрицательным темпом для , а затем темп убывания становится положительным и для P>0,9 выручка убывает все быстрее и приближается к нулю при неограниченном увеличении цены. Для наглядной демонстрации выше сказанного составим таблицу и построим график.
Вывод: На промежутке (0, 1/2) функция возрастает все медленнее. Соответствующая часть графика выпукла. Как уже отмечалось, дальнейшее повышение цены не выгодно. Сначала выручка убывает с отрицательным темпом, а затем темп убывания V(p) становится положительным. Для р > 0,9 выручка убывает все быстрее и приближается к нулю при неограниченном увеличении цены. На промежутке функция U(p) вогнута. В точке график перегибается (см. на рисунке): 8. Применение производной в физикеВ физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин. Задача 1. Лестница длиной 5м приставлена к стене таким образом, что верхний ее конец находится на высоте 4м. В некоторый момент времени лестница начинает падать, при этом верхний конец приближается к поверхности земли с постоянным ускорением 2 м/с2. С какой скоростью удаляется от стены нижний конец лестницы в тот момент, когда верхний конец находится на высоте 2м? Пусть верхний конец лестницы в момент времени t находится на высоте y(0)= 4м, а нижний на расстоянии x(t) от стенки.Высота y(t) описывается формулой: ,так как движение равноускоренное.В момент t: y(t) = 2, т.е. 2 = 4 - t2, из которого ;В этот момент по т. Пифагора, т.е.Скорость его измененияОтвет:Задача 2Дождевая капля падает под действием силы тяжести; равномерно испаряясь так, что ее масса m изменяется по закону m(t) = 1 - 2/3t. (m изменяется в граммах, t - в секундах). Через сколько времени после начала падения кинематическая энергия капли будет наибольшей?Скорость капли , её кинетическая энергия в момент t равнаИсследуем функцию на наибольшее с помощью поизводной:=0 t1=0 t2=1 (t>0)При t =1 функция Ek(t) принимает наибольшее значение, следовательно кинетическая энергия падающей капли будет наибольшей через 1сек.Задача 3Источник тока с электродвижущей силой Е=220 В и внутренним сопротивлением r = 50 Ом подключен к прибору с сопротивлением R.Чему должно быть равно сопротивление R потребителя, чтобы потребляемая им мощность была наибольшей?По закону Ома сила тока в цепи естьвыделяемая в потребителе мощность P=I2R, то естьИсследуем функцию P(R) на наибольшее с помощью производной: P’(R) = 0 : r - R = 0, R = r = 50; При R = 50 функция P(R) принимает наибольшее значение. Следовательно, потребляемая мощность будет наибольшей при сопротивлении R =50 Ом.О– твет: 50 Ом9. Применение производной в алгебре9.1. Применение производной к доказательству неравенств.Одно из простейших применений производной к доказательству неравенств основано на связи между возрастанием и убыванием функции на промежутке и знаком ее производной. С помощью теоремы Лагранжа доказана теорема: Теорема 1. Если функция на некотором интервале имеет производную всюду на , то на монотонно возрастает; если же всюду на , то на монотонно убывает. Очевидным следствием (и обобщением) этой теоремы является следующая: Теорема 2. Если на промежутке выполняется неравенство , функция и непрерывны в точке и , то на выполняется неравенство . Предлагаю несколько задач на доказательство неравенств с использованием этих теорем. Задача 1. Пусть .Докажите истинность неравенства . (1) Решение: Рассмотрим на функцию . Найдем ее производную: . Видим, что при . Следовательно, на убывает так, что при . Но Следовательно неравенство (1) верно. Задача 2. Пусть и положительные числа, Тогда очевидно, что , . Можно ли гарантировать, что неравенство (2) верно а) при ; б) при ? Решение: а) Рассмотрим функцию . Имеем: Отсюда видно, что при функция возрастает. В частности, она возрастает на интервале Поэтому при неравенство (2) справедливо. б) на интервале , т.е. убывает. Поэтому при любых и , для которых , неравенство (2) неверно, а верно неравенство противоположного смысла: Задача 3. Доказать неравенство: при (3). Воспользуемся теоремой 2. и , верно неравенство : на промежутке и выполнимо условие где , в данном случае равно 0. Следовательно неравенство (3) верно. Задача4. Доказать неравенство: (4). Решение: , ; Неравенство при любых верно. Значит неравенство (4) верно. Задача5. Доказать, что если , то (5). Решение: Пусть Тогда
Чтобы найти, при каких значениях функция положительная, исследуем ее производную . Так как при то Следовательно, функция возрастает при . Учитывая, что и непрерывна, получаем , при . Поэтому возрастает на рассматриваемом интервале. Поскольку непрерывна и то при . Неравенство (5) верно. Задача 6. Выясним, что больше при : или . Решение: Предстоит сравнить с числом 1 дробь . Рассмотрим на вспомогательную функцию . Выясним, будет ли она монотонна на отрезке . Для этого найдем ее производную (по правилу дифференцирования дроби): при . В силу теоремы 1 функция вырастает на отрезке . Поэтому, при т.е. при . При решении задачи (6) встретился полезный методический прием, если нежно доказать неравенство, в котором участвует несколько букв, то часто целесообразно одну из букв (в данном примере это была буква ) считать применимой (чтобы подчеркнуть это обстоятельство, мы ее заменяли буквой , а значение остальных букв (в данном случае значение буквы ) считать фиксированными. Иногда приходится при решении одной задачи применить указанный прием несколько раз. Задача 7. Проверить, справедливо ли при любых положительных неравенство: (6). Решение: Пусть Рассмотрим функцию . При имеем . Отсюда видно (теорема 1), что убывает на Поэтому при имеем т.е. мы получили неравенство: (7). Теперь рассмотрим другую вспомогательную функцию . При имеем: Следовательно, убывает на , т.е. при значит, (8), Из неравенств (7) и (8) следует неравенство (6). Для выяснения истинности неравенств иногда удобно воспользоваться следующим утверждением, которое непосредственно вытекает из теоремы 1: Теорема 3: Пусть функция непрерывна на и пусть имеется такая точка с из , что на и на . Тогда при любом х из справедливо неравенство причем равенство имеет место лишь при . Задача 8. Проверьте, справедливо ли для всех действительных х следующее неравенство: Решение: Выясним, где функция возрастает, а где убывает. Для этого найдем производную: . Видно, что на и на . Следовательно, в силу теоремы 3 т.е. неравенство (9) справедливо, причем равенство имеет место лишь при . 9.2. Применение производной в доказательстве тождеств.Доказательства тождества можно достигнуть иногда, если воспользоваться одним очевидным замечанием: Если на некотором интервале функция тождественно равна постоянной, то ее производная на этом интервале постоянно равна нулю: на на . Задача 1. Проверить тождество: (1) Доказательство: Рассмотрим функцию
Вычислим ее производную (по х):
Поэтому (замечание) . Следовательно, что равносильно тождеству (1). Задача 2. Проверить тождество: (2) Доказательство: Рассмотрим функцию
Докажем, что Найдем ее производную:
Значит. В связи с рассмотренными примерами можно отметить, что при нахождении постоянной, интегрирования С полезно фиксировать значения переменной, по которой производится дифференцирование, таким образом, чтобы получить возможно более простые выкладки. 9.3. Применение производной для упрощения алгебраических и тригонометрических выражений.Прием использования производной для преобразования алгебраических и тригонометрических выражений основан на том, производная иногда имеет значительно более простой вид, чем исходная функция, благодаря чему, она легко интегрируется, что и позволяет найти искомое преобразование исходного выражения: Задача 1 Упростить выражение: Решение: Обозначив данное выражение будем иметь:
Таким образом, заданное выражение (1) равно . Задача 2. Упростить выражение:
Решение: Обозначив это выражение через , будем иметь: отсюда . и при получаем: Так что Задача 3. Упростить запись функции: (2) Решение: Применение обычного аппарата тригонометрии приведёт к относительно громоздким выкладкам. Здесь удобнее воспользоваться производной: Отсюда Найдём : Таким образом функция (2) равна Задача 4. Упростить запись многочлена: (3) Решение: Обозначим многочлен (3) через и найдём последовательно первую и вторую производные этой функции: Ясно, что Поэтому , где , найдём : при , . 9.4.Разложение выражения на множители с помощью производной.Задача 1. Разложить на множители выражение: (1) Решение: Считая переменной, а и постоянными фиксированными (параметрами) и обозначая заданное выражение через , будем иметь: Поэтому (2) где - постоянная, т.е. в данном случае - выражение, зависящее от параметров и . Для нахождения в равенстве положим тогда . Получим Задача 2. Разложить на множители выражение: (3) Решение: Поскольку переменная входит в данное выражение в наименьшей степени, рассмотрим его, как функцию и будем иметь: получим: Таким образом, исходное выражение (3) равно Задача 3. Разложить на множители выражение: Решение: Обозначив данное выражение через и считая и постоянными, получим: откуда , где зависит только от и . Положив в этом тождестве , получим и Для разложения на множители второго множителя используем тот же приём, но в качестве переменной рассмотрим , поскольку эта переменная входит в меньшей степени, чем . Обозначая его через и считая и постоянными, будем иметь: отсюда: Таким образом исходное выражение (4) равно 9.5. Применение производной в вопросах существования корней уравнений.С помощью производной можно определить сколько решений имеет уравнение. Основную роль здесь играют исследование функций на монотонность, нахождение её экстремальных значений. Кроме того, используется свойство монотонных функций: Задача 1. Если функция возрастает или убывает на некотором промежутке, то на этом промежутке уравнение имеет не более одного корня. (1) Решение: Область определения данного уравнения - промежуток определение на этом промежутке функцию , положив Тогда, на , и таким образом функция - возрастающая, так что данное уравнение (1) не может иметь более одного решения. Задача 2. При каких значениях имеет решения уравнение (2) Решение: область определения уравнения - отрезок , рассмотрим функцию , положив Тогда на открытом промежутке , так что - единственная критическая точка функции , являющаяся, очевидно, точкой максимума. Поскольку то примет наибольшее значение при , а наименьшее значение - при . Так как функция непрерывна, то её область значений представляет собой отрезок , между её наименьшим и наибольшим значением. Другими словами, исходное уравнение (2) имеет решения при . Заключение Настоящая работа даёт учащимся новый подход к многим преобразованиям в математике, которые стандартным путём трудно разрешимы или разрешимы, но громоздкими способами. Рассмотренные подходы нестандартного характера для учащихся покажутся новыми и необыкновенными, что расширит их кругозор и повысит интерес к производной. Итак, геометрический смысл производной: производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0. Физический смысл производной: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0 Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Производная находит широкое приложение в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени; для нахождения наибольших и наименьших величин. Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул. Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.). Производная применяется в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем Знание производной позволяет решать многочисленные задачи по экономической теории, физике, алгебре и геометрии.
|
|
||||||||||||||||||||||||||||||||||||||||||||||
|