реферат
Главная

Рефераты по биологии

Рефераты по экономике

Рефераты по москвоведению

Рефераты по экологии

Краткое содержание произведений

Рефераты по физкультуре и спорту

Топики по английскому языку

Рефераты по математике

Рефераты по музыке

Остальные рефераты

Рефераты по авиации и космонавтике

Рефераты по административному праву

Рефераты по безопасности жизнедеятельности

Рефераты по арбитражному процессу

Рефераты по архитектуре

Рефераты по астрономии

Рефераты по банковскому делу

Рефераты по биржевому делу

Рефераты по ботанике и сельскому хозяйству

Рефераты по бухгалтерскому учету и аудиту

Рефераты по валютным отношениям

Рефераты по ветеринарии

Рефераты для военной кафедры

Рефераты по географии

Рефераты по геодезии

Рефераты по геологии

Реферат: Моделирование дискретной случайной величины и исследование ее параметров

Реферат: Моделирование дискретной случайной величины и исследование ее параметров

ИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ


ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ


Кафедра РЭС (РТС)

КОНТРОЛЬНАЯ РАБОТА

По курсу «Методы проектирования и оптимизации РЭ

Вариант №7


Выполнил:

ст.гр. РТз – 98 – 1

Чернов В.В.

Шифр 8209127 

Проверил:

Карташов В. И.

____________________

Харьков 2003

            Задание 1. Выполнить моделирование на ЭВМ базовой случайной величины (БСВ) Х. Получить выборки реализаций БСВ объемом n = 170, 1700. Для каждого случая найти минимальное и максимальное значения, оценить математическое ожидание и дисперсию. Сравнить полученные числовые характеристики с теоретическими значениями.

Решение

            Базовой называют случайную величину, равномерно распределенную на интервале (0,1). Моделирование производится при помощи функции rnd(m) пакета MathCad 2000, возвращающей значение случайной величины, равномерно распределенной в интервале 0xm.

            а) для выборки объемом 170 (рис. 1.1): Xmin = 0.0078, Xmax = 0.996.

Первый начальный момент (математическое ожидание) равен среднему арифметическому значений выборки:

                                                   МХ = 0.502 ,                                             (1.1)

второй центральный момент (дисперсия):

                              D =  0.086 ,                            (1.2)

среднеквадратичное отклонение:

                                                        s = 0.293 .                                                  (1.3)

Рисунок 1.1 Выборка объемом 170.

            Для выборки объемом 1700 (рис. 1.2): Xmin = 0.0037, Xmax = 0.998,

                                                   МХ = 0.505 ,                                           (1.4)

                                D =  0.085 ,                        (1.5)

             

                                                             s = 0.292 .                                              (1.6)

Рисунок 1.2 Выборка объемом 1700.

Теоретически значения математического ожидания и дисперсии БСВ рассчиты-ваются из определения плотности распределения вероятности:

                                                            pравн(x) =  ,                                                  (1.7)

математическое ожидание:

                                                 Mx = 0.5 ,                                       (1.8)

дисперсия:

                               Dx =

                                                           =0.083 ,                                                  (1.9)

что хорошо совпадает с результатами моделирования (1.1) – (1.5).

Задание 2. Получить выборку реализаций БСВ объемом n = 1700. Построить гистограмму распределений и сравнить ее с плотностью распределения равномерно распределенной случайной величины.

Решение

а) выборка получается аналогично Заданию 1(рис. 2.1):

Рисунок 2.1 Выборка объемом 1700

Приняв Xmin = 0, Xmax = 1, разбиваем интервал на q = 10 равных промежутков, каждый из которых равен:

                                                       DX = .                                             (2.1)      

            Количества выборок, попадающих в каждый из интервалов, частоты попадания, оценки плотности сведены в табл. 2.1. Гистограмма распределений представлена на рис. 2.2. Как видно, она достаточно хорошо совпадает с равномерным законом распределения (1.7).

Таблица 2.1 Результаты оценки плотности распределения

Номеринтер-вала

1

2

3

4

5

6

7

8

9

10

Диапа-зон значе-ний 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1
Коли-чество попа-даний 151 174 149 189 190 161 166 182 177 161

Часто-та по-пада-ния Pi

0.089 0.102 0.088 0.111 0.112 0.095 0.098 0.107 0.104 0.095

Оцен-ка плот-ности

pi

0.888 1.024 0.876 1.112 1.118 0.947 0.976 1.071 1.041 0.947

Рисунок 2.2 Гистограмма распределений

Задание 3. Получить выборку БСВ объемом n = 1700, По этой выборке проверить свойства независимости полученной случайной последовательности (вычислить 10 значений коэффициента корреляции).

Решение

а) снова получим выборку значений БСВ объемом n = 1700 (рис. 3.1):

Рисунок 3.1 Выборка объемом 1700

б) значения математического ожидания и дисперсии:

                                                    M = 0.512 ,                                                          (3.1)

                                             D =  0.088 .                                            (3.2)

в) функция корреляции:

                                              R(j) =  ,                                           (3.3)

значения R(j) для j = 1…10 приведены в табл. 3.1 , значение R(0) = 0.088  совпадает с дисперсией.

Таблица 3.1 Значения функции корреляции:

j

1 2 3 4 5 6 7 8 9 10

R(j)

-9.6·10-4

3.53­·10-3

2.7·10-4

4.24·10-3

-1.73·10-3

6.61·10-4

4.11·10-4

6.74·10-5

3.95·10-4

1.12·10-3

Задание 4. Выполнить моделирование случайной величины, распределенной по закону Релея. Объем выборки n = 17, s2 = 27.

Решение

            Ддя получения случайной величины с заданным законом распределения из БСВ применим метод обратной функции:

а) для распределения Релея

                                                                  p(x) =                                                           (4.1)

случайная величина

                                             x = F(x) =                                       (4.2)

равномерно распределена в интервале 0…1, и может быть задана с помощью БСВ. Решив уравнение (4.2) относительно x, получаем случайную величину, распределенную по закону (4.1):

                                                            xi =  ,

                                                       xi =  ,                                                            (4.3)

где xi – значения выборки БСВ

Результат моделирования случайной величины xi представлен на рис. 4.1:

Рисунок 4.1 Выборка случайной величины, распределенной по закону Релея

СПИСОК ЛИТЕРАТУРЫ

1.    Вентцель Е. С. Теория вероятностей. М. Физматгиз, 1962. – 246 с.

2.    Тихонов В. И. и др. Примеры и задачи по статистической радиотехнике. М. – Сов. радио,  1970. – 600 стр.

3.    Трохименко Я.К., Любич Ф.Д. Радиотехнические расчеты на ПК: Справочник. М. – Радио и связь, 1988. – 304 с.


 
© 2012 Рефераты, доклады, дипломные и курсовые работы.