реферат
Главная

Рефераты по биологии

Рефераты по экономике

Рефераты по москвоведению

Рефераты по экологии

Краткое содержание произведений

Рефераты по физкультуре и спорту

Топики по английскому языку

Рефераты по математике

Рефераты по музыке

Остальные рефераты

Рефераты по авиации и космонавтике

Рефераты по административному праву

Рефераты по безопасности жизнедеятельности

Рефераты по арбитражному процессу

Рефераты по архитектуре

Рефераты по астрономии

Рефераты по банковскому делу

Рефераты по биржевому делу

Рефераты по ботанике и сельскому хозяйству

Рефераты по бухгалтерскому учету и аудиту

Рефераты по валютным отношениям

Рефераты по ветеринарии

Рефераты для военной кафедры

Рефераты по географии

Рефераты по геодезии

Рефераты по геологии

Доклад: Метод решения уравнений Ньютона - Рафсона

Доклад: Метод решения уравнений Ньютона - Рафсона

Метод Ньютона-Рафсона, также известный как Метод Ньютона, представляет собой обобщенный метод поиска корня уравнения

(1)

Примем x = xj в качестве j-го приближения к корню уравнения (1). Предположим, что xj не является решением. Следовательно, . Предположим также, что мы получили разложение в ряд Тейлора для уравнения (1) относительно точки x = xj:

(2)

Если примем в качестве следующего члена x = xj+1, то уравнение (2) будет иметь вид:

(3)

Теперь предположим, что справедливо необязательное допущение того, что предыдущее приближение xj было удовлетворительным, так что xj+1 - xj мало. Если это предположение верно, мы можем пренебречь членами более высокого порядка в уравнении (3), так как n-я степень малой величины значительно меньше, чем малая величина для n>=2. В этом случае уравнение (3) может быть аппроксимировано следующим образом:

(4)

Нашей целью является выбор такого xj+1, чтобы оно стало решением уравнения (1). Следовательно, если наше предыдущее предположение справедливо, xj+1 должно быть выбрано таким, что. Приравняв уравнение (4) к нулю и решив относительно xj+1, получим:

(5)

Уравнение (5) называется уравнением Ньютона - Рафсона. Если наше предположение, приведшее к выводу уравнения (5), справедливо, этот алгоритм будет сходящимся, но только в том случае, если точка начального приближения достаточно близка к точке решения. Геометрическая интерпретация сходящегося метода Ньютона - Рафсона приведена на рис. 1а.

а) метод сходится б) метод не сходится

Рис.1. Геометрическая интерпретация метода Ньютона - Рафсона

Однако, если точка начального приближения далека от точки решения, то метод Ньютона - Рафсона может не сходиться совсем. Геометрическая интерпретация не сходящегося метода Ньютона - Рафсона приведена на рис. 1б.

Алгоритм

Назначение: поиск решения уравнения (1)

Вход:

   Начальное приближение x0

   Точность (число итераций I)

Выход:

   xI - решение уравнения (1)

Инициализация:

   calculate f’(x0)

Шаги:

1.     repeat:

2.            calculate xi using (5)

3.            let i=i+1

4.            if i>I then break the cycle

       end of repeat

Модификация алгоритма Ньютона для решения системы нескольких уравнений заключается в линеаризации соответствующих функций многих переменных, т. е. аппроксимации их линейной зависимостью с помощью частных производных. Например, для нулевой итерации в случае системы двух уравнений:

Чтобы отыскать точку, соответствующую каждой новой итерации, требуется приравнять оба равенства нулю, т.е. решить на каждом шаге полученную систему линейных уравнений.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.xaoc.ru/


 
© 2012 Рефераты, доклады, дипломные и курсовые работы.